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ABSTRACT

Music recommendation is an important aspect of many
streaming services and multi-media systems, however, it is
typically based on so-called collaborative filtering methods.
In this paper we consider the recommendation task from a
personal viewpoint and examine to which degree music pref-
erence can be elicited and predicted using simple and robust
queries such as pairwise comparisons. We propose to model
- and in turn predict - the pairwise music preference using
a very flexible model based on Gaussian Process priors for
which we describe the required inference. We further propose
a specific covariance function and evaluate the predictive per-
formance on a novel dataset. In a recommendation style set-
ting we obtain a leave-one-out accuracy of 74% compared to
50% with random predictions, showing potential for further
refinement and evaluation.

Index Terms— Music Preference, Kernel Methods,

Gaussian Process Priors, Recommendation

1. INTRODUCTION

Methods for music recommendation has received a great deal
of attention the last decade with most approaches typically be-
ing classified as collaborative filtering (fop-down) or content-
based (bottom-up) methods, with hybrid methods (see e.g.
[1]) comprising both. Such hybrid systems exploits both rat-
ings and contents to make recommendations, but the focus
is still on the recommendation itself and not the basic ques-
tions of preference. Although from a fundamental point of
view it is also interesting how well human preference can be
elicited and represented without relying on the help of oth-
ers. This also includes the aim to answer basic questions such
as which properties of music determines the persons music
preference. Obviously the potential power of collaborative
filtering should not be discarded, but exploited in a princi-
pled manner in order to answer basic questions and hopefully
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provide an even better predictive model of individual music
preference.

Based on these observations we consider music prefer-
ence in a personalized setting by applying a Gaussian Process
regression model which takes into account both human rat-
ings and audio features. In contrast to many audio rating sys-
tems it is not based on absolute ratings of a single track, but
on a pairwise comparisons between tracks, which is typically
considered robust and have a low cognitive load (see e.g. [2]).

We furthermore propose to use a covariance function mo-
tivated from a generative view of audio features with a po-
tential multi-task part which lead to similar capabilities as
standard collaborative filtering, but with the added informa-
tion level provided by subject features. Posterior inference
in the resulting non-parametric Bayesian regression model is
performed using a Laplace approximation of the otherwise in-
tractable distribution. Any hyperparameters in the model can
be learned using an empirical Bayes approach.

We evaluate the resulting model by its predictive power
on a small scale, public available dataset [3] where 10 sub-
jects evaluate 30 tracks in 3 genres. We report and discuss
a number of aspects of the performance such as the learning
curves as a function of the number of pairwise comparisons
and learning curves when leaving out a track as test set.

2. METHODS

In this work we focus on modeling preference elicited by pair-
wise queries, i.e., given two inputs tracks u and v we ob-
tain a response, y € {—1,1}, where y = —1 corresponds
to a preference for u, and +1 corresponds to a preference
for v. We consider n distinct input tracks x; € X denoted
X = {x;]li =1,...,n}, and a set of m responses on pairwise
comparisons between any two inputs in X', denoted by

Y ={(yr; ur,ve)|k =1,...,m},

where yi, € {—1,1}. ux € X and v, € X are option one and
two in the k’th pairwise comparison.

We consider y;, as a stochastic variable and we can then
formulate the likelihood of observing a given response as cu-
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mulative normal distribution.
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with f, = [f (ug), f (v)], ®(x) defines a cumulative Gaus-
sian (with zero mean and unity variance) and 6 = {c}. This
is in turn the well known Probit classification model, where
the argument is the difference between two latent variables
(functional values) and not just a single latent variable. This
in effect implies that the f(-) encodes an internal, but latent
preference function which can be elicited by pairwise com-
parisons via the likelihood model in Eq.( 1). This idea was
already considered by [4], but recently suggested in a Gaus-
sian Process context by [5].

2.1. Gaussian Process Prior

The real question remains, namely how f is modelled. We
will follow the principle suggested by [5] in which f is con-
sidered an abstract function and we can in turn place a prior
distribution over it. A natural prior is a Gaussian Process
(GP) defined as "a collection of random variables, any finite
number of which have a (consistent) joint Gaussian distribu-
tion” [6]. Following [6] we denote a function drawn from a
GP as f (x) ~ GP (0,k(-,-),) with a zero mean function,
and k(-, -)g, referring to the covariance function with hyper-
parameters 6., which defines the covariance between the ran-
dom variables as a function of the inputs X'. The consequence
of this formulation is that the GP can be considered a distri-
bution over functions, i.e., p (f| X, 8.), with hyper-parameters
0.and f = [f(xl)v f(w2)7 ey f(xn)]T

In a Bayesian setting we can directly place the GP as
a prior on the function defining the likelihood. This leads
us directly to a formulation given Bayes relation with 8 =
{0[57 06}

p (y|f7 eﬁ)p(ﬂxa ac)

The prior p(f|X,0.) is given by the GP and the likeli-
hood p (YV|f,0,) is the two likelihood defined previously,
with the usual assumption that the likelihood factorizes, i.e.,

p(VIf,0c) = . fll P (yk!f(uk), f(vk),0c)

The posterior of interest, p (f|), X, 8), is defined when
equipped with the likelihood and the prior, but it is unfortu-
nately not of any known analytical form, thus we rely on the
Laplace approximation.

2.2. Inference & Hyperparameters

We apply the Laplace approximation and approximate the
posterior by a multivariate Gaussian distribution, such that
p(£|Y) ~ N(f|f,A~1). Where f is the mode of the pos-
terior and A is the Hessian of the negative log-likelihood at
the mode.
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The mode is found as f = argmaxe p (V|f) p (£). We
solve the problem by considering the unnormalized log-
posterior and the resulting cost function which is to be maxi-
mized, is given by

1
1/’ (f‘an70> :logp(y|f7Xa0£) - ifTKilf
3
1 N
— —log |K| — — log 27.
5 log|K| — = log 2w

where K; ; = k(x;,x;)e,. We use a damped Newton method
with soft linesearch to maximize Eq. (3). In our case the basic
damped Newton step (with adaptive damping factor \) can be
calculated without inversion of the Hessian (see [7])

e — (K1 W = \I)
(W =)I) — £+ Viegp(V|f, X, 0,)], 4

Using the notation VV,; ; = Wgﬂw we apply the def-
inition W, ; = — 3", V'V, ;log p(yx|fr, 0). We note that
the term V'V, ; log p(yx £, 8 ) is only nonzero when both z;
and x; occur as either vy, or uy, in f. In contrast to standard
binary GP classification, the negative Hessian, W is not diag-
onal, which makes the approximation slightly more involved.
When converged, the resulting approximation is

p (£, X,0) ~ N (£, (W+K ) 7"). 5)

We refer to [7] for a full derivation and for the required deriva-
tives as first outlined in [5]. Parameters in the likelihood and
covariance function, collected in 6, are found by evidence op-
timization using a standard BFGS method.

2.3. Predictions & Evaluations

Given the model, in essence defined by f, we wish to make
predictions of the observed variable y for a pair of test in-
puts 7 € &, and s € X;. We are especially interested in
the discrete decision, i.e., whether r is preferred over s de-
noted by r > s, or vice versa. Omitting the conditioning on
X and X}, we can write the joint prior distribution between
f ~ p(£|),6) and the test variables £, = [ (), f (s)]" as

(s e e

where k; is a matrix with elements ko; = k(s,z;)e, and
ki, = k(r,z;)g, with x; being a training input. The con-
ditional p (f;|f) is obviously Gaussian as well and can be
obtained directly from Eq. (6). The predictive distribution
is given as p (£,|),0) = [p(f|f)p(f|Y,0)df. With the
posterior approximated with the Gaussian from the Laplace
approximation, then p (£;|), 0) will be Gaussian too and is

given as N (f;|p*, K*) with p* = [, pi%]7 = kK~ 'f and
* K:r K:s
K" = [ K K- } =K, - kI T+ WK)k,



where f and W are obtained from Eq. (5). With the predictive
distribution for f;, the final prediction of the observed variable
is available from

D (ye| Y, 0) = /p(yt|fta9£)p(ft|y>0)dft @)

If the likelihood is an odd function, as in our case, the bi-
nary preference decision between r and s can be made di-
rectly from p (f;|)).

If p (f;|), 0) is Gaussian and we consider the Probit like-
lihood, the integral in Eq. (7) can be evaluated in closed form
as a modified Probit function given by [5]

P(r>=sly) =@ ((uy —p3)/o") ®)

with (0*)? = 202 + K7, + K*, — K*, — K?,

2.4. Kernels for Audio Preference

We suggest a general purpose covariance function for audio
modeling tasks with GPs. It can easily integrate different
modalities and meta-data types, such as audio features, tags,
Iyrics and subject features. The general covariance function
is defined as

o) = (T b ) ) O

i=1

where the first factor is the sum of all the /N, covariance func-
tions defining the correlation structure of the audio part, z,,
of the complete instance, x. The second factor, or multi-task
part, is the covariance function defining the covariance struc-
ture of the subject meta-data part, z,,. The practical evalua-
tion is limited to the a individualized setting using only z,,
thus k (z,2") = k (24, 2,"), where we apply the probability
product kernel formulation [8]. The probability product ker-
nel is defined directly as an inner product, i.e., k (24, 2,") =
[ p(za) p(x,)]?dx, where p(z,) is a density estimate of
each audio track feature distribution. In this evaluation we fix
g = 1/2, leading to the Hellinger divergence [8]. As custom
in the audio community, see e.g. [9], we will resort to a (fi-
nite) Gaussian Mixture Model (GMM) in order to model the
feature distribution. So p(x) is in general given by p (z) =
SN p(2)p(x]2), where p (z]2) = N (2|p2,0.) is a stan-
dard Gaussian distribution. The kernel can be calculated in
closed form [8] as.

k (pa (J)) y Pa (37)) =
S5 a (2) par () (p (2162 p (216.)) (10)
where k (p (2]0.) , p (|0.)) is the probability product kernel

between two single components, which is also available in
closed form [8].
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3. EXPERIMENT

In order to evaluate the model proposed in section in 2, we
consider a small-scale dataset which is publicly available [3].
Specifically it consist of 10 test subjects, 30 audio tracks and
10 audio tracks per genre. The genres are Classical, Heavy
Metal and Rock/Pop.

The experiment is based on a partial, full pairwise design,
so that 155 out of the 420 combinations was evaluated by
each of the 10 subjects. We extract standard audio features
from the audio tracks, namely MFCCs (26 incl. delta coeffi-
cients). A GMM was fitted to each track distribution with a
fixed model complexity of NV, = 2 and each components re-
stricted to a diagonal covariance structure. Parameters where
fitted using a standard maximum likelihood based EM algo-
rithm using K-means initialization.

The experiment itself was conducted using a Matlab in-
terface in a 2-Alternative-Forced-Choice setup inline with the
model. The interface allowed subjects to listen to the two
presented tracks as many times they wanted before making a
choice between them. A questionnaire gathered subject meta-
data such as, age, musical training, context and a priori genre
preference. This data is, however, not used in this individu-
alized evaluation, but can easily be applied in the multi-task
kernel suggested in Sec. 2.4.

In the evaluation we are primarily interested in two as-
pects. The first, and main result, is an estimate of the gen-
eralization error on new unseen tracks, e.g., relevant for rec-
ommendation purposes. In order to evaluate this, we make
an extensive cross-validation using a 30-fold cross-validation
in which each track (incl. all connected comparisons) is left
out once; the model with o = 1 is then trained on 10 random
subsets of tracks for each training set size, which results in
an estimated of the average test error. The resulting learning
curve is shown in Fig. 1 with the box plot illustrating the dis-
tribution of the average subject performance. When consider-
ing Nyacks = 29 we obtain an average prediction performance
of 74.2% , which is the main result in a typical (individual)
recommendation scenario.

Secondly, we investigate how many pairwise comparisons
the model requires in order to learn the individual preferences.
This is evaluated using a 10-fold cross-validation over the
comparisons which gives the learning curve in Fig. 2. We no-
tice that on average we only require approximately 40% or 56
comparisons in order to reach the 25% level, corresponding
to approximately two comparisons per track.

4. DISCUSSION & CONCLUSION

We have outlined a pairwise regression model based on Gaus-
sian Process priors for modeling and predicting the pairwise
preference of music. We proposed an appropriate covariance
structure suitable for audio features (such as MFCCs) based
on generative models of audio features. The general version
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Fig. 1. Mean learning curve (blue line) and box plot over
subjects. Leave-one-(track)-out test error as a function of the
number of tracks in the training set. Thus, there can maxi-
mum be 29 tracks in the training set to predict the preference
between the left out track and the rest. The baseline is 0.5
corresponding to random guessing.

of the covariance function allows for multi-task scenarios and
feature integration. We evaluated the setup in a individual sce-
nario in which we showed a 74% average accuracy. This indi-
cates that there might very well be a promising upper bound
on the number of required pairwise comparisons in this music
setting, in effect implying that the specified correlation struc-
ture makes sense. This will ensure that the required number
of pairwise comparisons does not scale quadratically when
including more tracks.

We furthermore observe a difference among the different
subjects indicating that some subjects may have a very con-
sistent preference, possibly aligning well with the applied co-
variance function, while others seem very difficult to predict
(observed as outliers in the box plot). We speculate that the
pairwise approach to music preference is only possible for
certain groups of subjects and/or in special contexts, which is
to be investigated in future research.

The current model is intended for modeling personal
preferences over a small/medium size dataset. For large
datasets with millions of tracks, we see sparse techniques
using pseudo-inputs and sequential selection as a powerful
combination to scale the model and only use informative
comparisons. Furthermore, a direct comparison between
classic collaborative filtering with absolute ratings is obvious
when a suitable dataset supporting is available.

In conclusion we have proposed a novel rating and mod-
eling paradigm for eliciting music preference using pairwise
comparisons. We conducted a preliminary evaluation of the
performance on a small dataset and find the results promising
for robust elicitation of music and audio preference in general.
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Fig. 2. Mean learning curve (red line) and box plot over
the subjects mean performance. Test error rate as a func-
tion of the number of pairwise comparisons in the the
training set. Notice that a fraction of one corresponds to
(155 - 90%) /420 ~ 33.2% of all possible pairwise experi-
ments.
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