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ABSTRACT

Conventional speech features, such as mel-frequency cepstral
coefficients, tend to perform well in template matching systems,
such as dynamic time warping, in low noise conditions. However,
they tend to degrade in noisy environments. We propose a method
of calculating features using the probabilistic latent component anal-
ysis (PLCA) framework. This framework models the speech and
noise separately, leading to higher performance in noisy conditions
than conventional methods. In this work, we compare our PLCA-
based features with conventional features on the task of aligning a
high-fidelity speech recording to a noisy speech recording, a sce-
nario common in automatic dialogue replacement.

Index Terms— Probabilistic Latent Component Analysis, Dy-
namic Time Warping, Automatic Dialogue Replacement

1. INTRODUCTION

Automatic time alignment of audio has many interesting applica-
tions, including synchronizing high-quality speech to a low-quality
reference recording of the same utterance, aligning dialogue of dif-
ferent languages to aid in foreign overdubbing, and synchronizing
recorded instrument tracks. In this paper, we refer to the unaligned
recording as the overdub and the recording with the desired timing as
the reference. Rather than simply shifting an audio clip by a global
offset or sampling factor, automatic time alignment systems stretch
and compress the signal dynamically within a clip. These systems
typically consist of three steps [1] (see Figure 1(a)), which are calcu-
lating features for both the reference and the overdub signals, finding
the optimal alignment mapping between the two signals using dy-
namic time warping (DTW) [2], and synthesizing a warped version
of the overdub signal so that it temporally matches the reference sig-
nal [3]. In this paper, we concentrate on the first step. Specifically,
we propose a method of feature calculation that exhibits better per-
formance than conventional features when used with noisy record-
ings. This new method is based on probabilistic latent component
analysis (PLCA) [4], a method that is commonly used in source sep-
aration [5] and can also be used for denoising. Instead of simply
denoising the noisy reference signal and then calculating conven-
tional features, we propose directly using certain estimated PLCA
model parameters as features. We show that this new method pro-
vides significant improvement in time alignment tasks, particularly
in the case in which we have noisy recordings.

For our experiments, we focus on the application of synchro-
nizing a high-quality speech overdub with a lower-quality reference
recording. This scenario is commonly encountered in moviemaking,
where the original video recordings use distant microphone setups
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(a) Block Diagram of three-stage automatic aligment system

(b) Block diagram of conventional feature extraction method

(c) Block diagram of proposed PLCA feature extraction method

Fig. 1. Block diagrams of automatic alignment system, conventional
feature extraction, and proposed PLCA feature extraction

and are often in a noisy environment, which result in poor audio
quality. It is common procedure to record the actors in a proper
sound studio environment afterwards, where they try to match their
speech from the original video recordings. That higher quality au-
dio is the one that gets used in the final movie mix. The process of
re-recording actors in the studio is known as automatic dialogue re-
placement1 (ADR). If an automatic alignment system is not used,
then the actors must re-record their lines until the timing is per-
fect. Some manual alignment may be possible by a studio engineer,
but can be even more time-consuming and difficult than recording
perfectly-timed lines. The appeal of utilizing an automatic align-
ment system is that it has the potential of significantly speeding up

1The “automatic” in ADR refers to the process of automatically looping
a clip until the actor gets the overdub version perfect. However, the actual
alignment is not automatic.
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the ADR process, since the actor will need to record just one good
performance in the studio, and the alignment system can automati-
cally take care of the timing.

2. BACKGROUND

In the first step of the automatic alignment process, features are cal-
culated on a frame-by-frame basis for both the reference and overdub
recordings. In a typical automatic alignment system, the subsequent
step is where the actual time alignment calculations are performed.
The DTW algorithm does not use the reference and overdub features
directly, but acts on the similarity matrix of the features. The similar-
ity matrix contains the cosine distance of the reference and overdub
features at each time window:

S(Fr(ta), Fo(tb)) = cos(θ) =
Fr(ta) · Fo(tb)

‖Fr(ta)‖‖Fo(tb)‖ (1)

where S ∈ [−1, 1]Tr,To

Fr(ta) is the feature vector of the reference signal at time frame ta
and Fo(tb) is the feature vector of the overdub signal at time frame
tb. Tr and To are the number of time frames of the reference and
overdub signals. The dynamic time warping algorithm then uses
this matrix to calculate a set of frame-to-frame correspondences that
maximize the overall similarity between the two sequences [2]. Now
that we have talked about the role of feature calculation and its im-
portance in alignment, we will look at some conventional feature
calculation methods and their performance in noise.

Conventional features for automatic time alignment tasks are the
same features conventionally used for automatic speech recognition
tasks. One such set of features is mel-frequency cepstral coefficients
(MFCCs) [6, 7]. Similar to speech recognition systems, MFCCs can
work very well in ideal recording conditions, but degrade in noise
[8]. This is illustrated in Figure 2 which shows the same section of
the similarity matrix for (a) a low-noise reference and overdub sig-
nal and (b) noisier reference (5 dB SNR) and overdub signal. The
reference is on the y-axis, the overdub is on the x-axis, and the be-
ginning of both the reference and overdub is on the bottom left cor-
ner. Black indicates a high similarity value and white indicates a
low similarity value. Ideally, the path would be clearly indicated by
having a much higher value than neighboring frames. In Figure 2(a),
a high-similarity path is clearly seen traveling diagonally from the
bottom left corner to the top right corner. A clear, accurate path like
this will result in an accurate alignment. However, when the refer-
ence becomes noisier (see Figure 2(b)), the MFCC’s begin to distort
and the previously clear patch through the similarity matrix is ob-
scured. Another popular set of features designed to be more robust
to noise is the relative spectral transform-perceptual linear prediction
[9] (RASTA-PLP). In Figure 2(c), the RASTA-PLP’s performance
with a non-noisy reference is accurate and on par with MFCC’s, but
also performs unsatisfactorily in the noisy 5 dB SNR case (see Fig-
ure 2(d)). In the next sections, we will introduce our PLCA-based
method and compare its performance in noise with the conventional
methods.

3. PROBABILISTIC LATENT COMPONENT ANALYSIS

3.1. Model

Before discussing the specifics of our feature calculation algorithm,
we introduce probabilistic latent component analysis (PLCA) [4].
This model can be used to model spectrograms and is a member of

(a) MFCC’s, noiseless reference (b) MFCC’s, noisy reference

(c) RASTA, noiseless reference (d) RASTA, noisy reference

(e) PLCA, noiseless reference (f) PLCA, noisy reference

Fig. 2. Similarity matrix of reference (y-axis) and overdub (x-axis)
for MFCC’s, RASTA-PLP, and PLCA features

a family of non-negative matrix factorization models [10]. PLCA
models a spectrogram as a probability distribution as follows:

XN (f, t) ≈ P (f, t) =
∑

z∈{1,2,...,K}
P (z)P (f |z)P (t|z) (2)

where XN (f, t) =
|X(f, t)|∑
f,t |X(f, t)| (3)

X(f, t) is the short-time Fourier transform (STFT) of a signal, and
XN (f, t) is the normalized STFT. P (f |z) corresponds to the spec-
tral building blocks, or spectral basis vectors. P (t|z) corresponds to
the temporal evolution of these spectral basis vectors. P (z) corre-
sponds to the relative contribution of each spectral basis vector. All
distributions are discrete. Given a spectrogram, the model parame-
ters are estimated using the EM algorithm.

3.2. PLCA-Based Feature Calculation

Before presenting our proposed feature calculation method, we first
recall some key characteristics of the data that we will be able to take
advantage of with our approach. In an automatic dialogue replace-
ment (ADR) scenario, the goal is to time align a high-fidelity over-
dub recording to a potentially noisy, lower quality reference record-
ing from the same speaker. Our proposed method takes advantage
of the fact that both clips are from the same speaker. In essence, our
method analyzes the overdub clip to find the speech characteristics,
which we then use to analyze the noisy clip more accurately than if
we had no prior knowledge of the speech. In contrast, typical feature
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calculation methods do not take advantage of this knowledge, ex-
tracting the features of the two clips independently (see Figure 1(b)).

The first step of our method is to calculate the magnitude sub-
band representation of each signal. We use a mel-spaced subband
representation because we found that it increased alignment perfor-
mance. When using a linearly-spaced narrowband spectrogram, if
the pitch of an utterance from the reference clip differs slightly from
the pitch in the studio clip, then they will not be represented well by
the same basis vectors. A mel-spaced subband representation helps
mitigate this so that small differences in pitch do not result in sig-
nificant changes in PLCA model parameters. Although we chose
mel-spaced subbands, logarithmically-spaced subbands could have
been used to achieve similar results.

Next, we perform PLCA on the spectrogram of the overdub stu-
dio version. We construct Fo, the weight features of the overdub
signal at each time frame t, as

Fo(z, t) = Po(t, z) = Po(t|z)Po(z), for z ∈ Zo (4)

where Zo is the set of Nspeech speech basis vectors learned in the
overdub signal. Intuitively, Fo can be thought of as a set of weights
that indicate how the speech basis vectors can be linearly combined
to approximate the observed signal. We reuse the basis vectors
learned from the overdub signal to be the speech basis vectors for
the reference recording. If we knew that the reference signal also
had little to no noise, then we would simply perform PLCA on the
reference to find a new Pr(z) and Pr(t|z), keeping the Po(f |z)
basis vectors learned in the previous step fixed. We would then
calculate the reference recording features Pr(z, t), as before. Since
we are using the same set of basis vectors for both the overdub and
reference clips, parts of audio similar in the reference will have val-
ues of Pr(t|z) similar to the values of Po(t|z). In other words, the
features learned from the two signals correspond to the same sounds
because they share the same speech basis. As long as the vocal
characteristics between the two dialogue recordings are similar, the
features of the corresponding parts of dialogue will match closely
and result in accurate alignment.

The preceding method will work well when the reference has
little noise, but will degrade with noise. Since the noise is not learned
and separated from the speech, the weight features will try to account
for the noise. With the PLCA framework, we are able to get around
this problem. When the reference recording is noisy, we still use
the speech basis vectors learned from the clean overdub signal, but
we also estimate an additional Nnoise basis vectors while running
PLCA on the reference to account for the noise. Since PLCA models
a spectrogram as a linear combination of basis vectors, introducing
noise affects the speech weight features much less than conventional
methods because the noise in the reference signal can be learned and
modeled explicitly by the algorithm. If we were to then synthesize
an enhanced speech signal with the speech basis and weight features,
we would be performing semi-supervised source separation [5], but
this is unnecessary for our task. The features for the reference signal
are then calculated by

Fr(z, t) = Pr(t, z) = Pr(t|z)Pr(z), for z ∈ Zo (5)

where Zo is the same set of speech basis vectors learned in the over-
dub signal. By modeling the noise separately from the speech, we
are able to calculate features that are more robust to noise. This can
be seen in Figure 2(e-f), which show same section of the similar-
ity matrix values for PLCA-based features. Notice how the similar-
ity matrix changes significantly less when noise is introduced than
when the MFCC and RASTA-PLP are used, having a clearly-defined
optimal path in both cases.

In summary, the steps of the algorithm ((see Figure 1(c)) are as
follows:

1. Calculate the subband representations of both the reference
and overdub signals.

2. Perform PLCA on the low-noise, overdub signal to find
Nspeech speech basis vectors.

3. Perform PLCA on the noisy reference signal, using the
speech basis vectors learned in the previous step. Include an
additional Nnoise basis vectors with random initial values.
Keep the speech basis vectors constant, but allow the noise
basis vectors to be updated to adapt to the noise.

4. The features for the overdub and reference recordings are
their speech weight features, Fo and Fr , as defined in (4) and
(5).

4. EXPERIMENTAL DESIGN AND RESULTS

We will now discuss our pilot study, where we compare our pro-
posed PLCA method with dynamic time warping using several con-
ventional features in an automatic time alignment task of a low-noise
overdub recording to a noisy reference recording. Two recordings
of the same four sentences were made by three male speakers and
one female speaker. The speakers were prompted to speak naturally
in both recordings, but no feedback was given about the timing of
the recordings. Thus, the timings, pitch contours, and pronuncia-
tion were noticeably different between the two recordings, but not
extremely different. To create noisy reference recordings, factory
noise from the NOIZEUS corpus [11] was added at -10, -5, -, +5,
and +10 dB SNR. The SNR was calculated by the average power
of active speech vs. the average power of the noise. All clips were
sampled at 16 kHz. The conventional features we compared to the
proposed method were MFCC and RASTA-PLP [9] features. We
also compared MFCC and RASTA-PLP feature sets calculated from
a denoised version of the noisy signal. For the denoising, we used
Ephraim and Malah’s classical enhancement algorithm [12] as im-
plemented by Loizou [13]. The same dynamic time warping algo-
rithm was used for all sets of features. The alignments calculated
by the DTW algorithm were compared to “ground truth” alignment.
The ground truth was found by first performing alignment on the ref-
erence and overdub clips with no noise added to the reference. Con-
ventional MFCC’s were used to calculate the ground truth. Time-
aligned synthesized signals were then compared with the reference
signals and manually verified that the performance of the ground
truth alignment was satisfactory, both by listening to the two signals
together as well as comparing their spectrograms.

For all feature sets, the same window length (32 ms) and hop
size (50%) were used. The MFCC features were calculated using the
first 8 discrete cosine transform (DCT) coefficients from the 29 mel-
spaced subband representation [7]. The RASTA-PLP model used an
8th-order PLP model and was calculated with the RASTA code from
[14]. Both the MFCC and RASTA-PLP features worked well with
noise-free references. Two PLCA models were used in the compar-
ison. The first used 40 basis vectors for speech and 40 for noise.
The second PLCA model just used 40 basis vectors for speech, so
the noise was not modeled separately. This was done to see if our
hypothesis that modeling the noise separately from the speech would
increase alignment performance. For the PLCA-based methods, we
combined the STFT subbands into 102 mel-spaced subbands.

In comparing DTW frame mapping of the aligned versions to
the ground truth, a frame was labeled as correct if it was within 2
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frames of the ground truth mapping. Since we used 32 ms windows
with a 50% overlap in our experiments, this corresponds to being
accurate within 32 ms. This value was chosen because it translates
to being accurate within one video frame for the common 30 frames
per second rate. We have plotted the alignment performance of the
features in figure 3. PLCA with separate speech and noise basis vec-
tors performed the best, followed by PLCA with speech basis vec-
tors only, Ephraim-Malah (E-M) with RASTA-PLP, RASTA-PLP,
Ephraim-Malah with MFCC’s, and finally MFCC’s. With this, we
have seen that processing the noisy signals with speech enhancement
techniques such as Ephraim-Malah can improve performance over
unprocessed signals, and that the RASTA-PLP, which was designed
to be more robust to noise, performs better in this task than MFCC’s.
In order to see whether PLCA may be performing so well just be-
cause it had the highest feature dimensionality, we tried keeping all
29 DCT coefficients for the MFCC’s. This improved their align-
ment performance, but still performed worse than all of the other
RASTA and PLCA sets of features. However, no combination of
conventional features and signal processing techniques that we tried
was able to match the performance of PLCA features at any of the
tested SNR’s, especially in lower SNR’s. This is consistent with
our prediction that all methods would perform fairly well in minimal
noise situations, but that the conventional methods would decrease
in performance significantly more than the proposed method in the
presence of noise.

5. CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed a new PLCA-based feature calcula-
tion method used in template matching and DTW applications such
as automatic alignment for automatic dialogue replacement. Our
alignment experiments showed a marked improvement over conven-
tional features in noisy environments, and put forth an example of
how data-driven machine-learning approaches can improve feature
selection. Some manual work was done in finding optimal param-
eters for the PLCA-based approach, but in future work, it would
be helpful to conduct a thorough investigation on choosing optimal
parameters. All of the experiments used the same set of parame-
ters, but it is likely that optimal parameters will vary depending on
speech characteristics, noise type, and SNR. In conclusion, we have
demonstrated that PLCA-based features for automatic time align-
ment are useful and that preliminary results show high potential to
aid in alignment, especially when one of the clips is noisy.
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