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ABSTRACT

We introduce a simple and novel method for the weakly supervised
problem of Part-Of-Speech tagging with a dictionary. Our method
involves training a connectionist network that simultaneously learns
a distributed latent representation of the words, while maximizing
the tagging accuracy. To compensate for the unavailability of true
labels, we resort to training the model using a Curriculum: instead
of random order, the model is trained using an ordered sequence of
training samples, proceeding from “easier” to “harder” samples. On
a standard test corpus, we show that without using any grammati-
cal information, our model is able to outperform the standard EM
algorithm in tagging accuracy, and its performance is comparable to
other state-of-the-art models. We also show that curriculum learning
for this setting significantly improves performance, both in terms of
speed of convergence and in terms of generalization.

1. INTRODUCTION

In spoken language understanding (SLU) and natural language pro-
cessing (NLP), machine learning techniques such as Hidden Markov
Models (HMM), Maximum Entropy models, Support Vector Ma-
chines and Conditional Random Fields have become the norm to
solve a range of disambiguation tasks such as part-of-speech (POS)
tagging, named-entity tagging, supertagging, and parsing [1]. These
techniques crucially rely on large amounts of data annotated with
the appropriate task labels for training the models. However, data
annotation is usually a tedious and an expensive process. In order to
address this limitation, a number of alternate techniques have been
proposed recently, both in the unsupervised and weakly supervised
settings for many NLP tasks [2].

In particular for POS tagging task, which is considered an im-
portant processing step towards semantics for speech and language
applications, Merialdo in [3] introduced a weakly supervised setting.
It involves developing a tagger for a language using large amounts
of un-annotated text, aided by a lexicon of words with all possible
POS tags for each word in that language (a dictionary). In practice,
such a lexicon can easily be extracted from a physical dictionary of
a language without the need for text annotation. This problem has
received a lot of attention recently and has been approached as a
shared task for exploring novel models, with a view of potentially
being useful in more realistic settings.

The most popular approach for solving this problem involves
variants of HMM-based generative models trained using Expectation-
Maximization (EM) and finding the parameters using Maximum
Likelihood Estimation (MLE) [3]. Departing from MLE, Goldwater
et al. [4] present a Bayesian approach with sparse priors, and sig-
nificantly improve the tagging accuracy. In contrast, Goldberg et
al. [5] show that when EM is provided good initial conditions, the
EM-HMM combination can result in significant improvements in
tagging accuracy. More recently, Ravi and Knight [6] obtain sub-
stantial improvements over previously published results, by using
EM to find the parameters of a model while using an integer program

to simultaneously constrain the model in order to find the smallest
model that explains the data. A number of authors have departed
from EM-HMM combination, including Smith and Eisner [7], who
use a contrastive estimation algorithm to train a log-linear model,
and Toutanova et al. [8] who propose a Bayesian LDA based model.

We propose a simple yet novel method using a neural network
for the problem of Part-of-Speech tagging with a dictionary. Each
word in the corpus is represented as a low dimensional latent dis-
tributed vector. A multi-layer neural network, and the latent repre-
sentation of the words are simultaneously trained, while minimizing
the tagging error. In order to accomodate the fact that it is a weakly
supervised training task, we propose a novel method for training the
model based on stochastic gradient descent, which exploits a regi-
mented learning strategy called Curriculum Learning [9]. Finally,
in order to handle multiple output tags associated with each training
sample, we propose a modification to the negative log-likelihood loss
function which is optimized during training. Once trained, tagging a
new sentence is extremely fast using our model.

We evaluate the performance of our model on the same Penn
Treebank test set used in the previous works. We show that our
model outperforms the standard EM algorithm with only lexical in-
formation and without an explicit model of the syntactic constraints
(typically encoded using n-grams of POS history). We also demon-
strate the utility of structuring the training regimen according to cur-
riculum learning in terms of convergence rates and accuracy on the
task.

The outline of the paper is as follows. In Section 2, we present
the model. Section 3 explains in detail the idea of curriculum learn-
ing. Experiments and results are presented in Section 4. Discussions
and conclusions are given in Section 5.

2. THE NEURAL NETWORK ARCHITECTURE

The architecture of our tagging model is similar to the one proposed
in [10] for tagging and [11, 12] for language modeling and other
NLP tasks. It is composed of two components. See Figure 1.

The first component, called the embedding layer, is a learnable
linear mapping which maps each word onto a low dimensional la-
tent space. Let the set of N unique words in the vocabulary of the
corpus be denoted by W = {w1, w2, . . . , wN}. Let us assume that
each word wi is coded using a 1-of-n coding (i.e., the i-th word of
the vocabulary is coded by setting the i-th element of the N dimen-
sional vector to 1 and all the other elements to 0). The embedding
layer, maps each word wi to a continuous vector zi which lies in
a D dimensional space: zi = C · wi, i ∈ {1, . . . , N}, where

C ∈ �D×N is a projection matrix. Continuous representation of
any k-gram (wiwi+1 . . . wi+k) is z = (zizi+1 . . . zi+k) – obtained
by concatenating the representation of each of its words. The encod-
ing of the dictionary is as follows. Let K be the total number of tags
in the dictionary. Then the dictionary entry di, is a binary vector of

size K with the jth element set to 1 if the tag j is associated with
word wi.
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Fig. 1. The neural network architecture, CNET, used for POS tag-
ging and simultaneously learning word embedding.

The second component, called the classification layer takes as
input the representation of the k-gram, and produces as output a vec-
tor of tag probabilities which are used to make the decision. In our
experiments this layer was composed of a single standard percep-
tron layer, followed by a fully connected linear layer with size equal
to the number of classes. The output of this linear layer is passed
through a soft-max non-linearity to generate conditional probabili-
ties for each class (tag). In particular, let oj denote the output of the
j-th unit of the last linear layer. Then the output of the i-th unit of

the soft-max non-linearity is given by pi = eoi
P

j e
oj . This classifier

can be viewed as a parametric function GM with parameters M.
In summary, each word in a given sequence of k words is first

mapped onto a D dimensional continuous space to create a feature
vector of size kD. This vector is then fed as input to the classi-
fier which generates a vector of tag probabilities conditioned on the
input. The two sets of trainable parameters for the model are the
mapping matrix C, and the set of parameters M associated with the
non-linear classifier GM.

2.1. The Loss Function

Using the POS tags of each word in the dictionary, we construct a
training set S = {(xi, yi) : i = 1, . . . , N}, consisting of the input-

output pairs. Each input xi is a sequence of k words obtained by
sliding a window of size k over the entire corpus. In particular, for
a sentence (W = w1 . . . wr), each training example xi consists of
a target word wj , with six words from its left (cl = wj−6 . . . wj−1)
and right context (cr = wj+1 . . . wj+6), in addition to orthographic
features (owj ) such as three character suffix and prefix, digit and up-

per case features. Thus the input xi is the 4-tuple (cl, wj , cr, owj ).

The corresponding output yi is set equal to dj : the binary dictio-
nary vector associated with the target word wj . Note that depending
on the word ambiguity one or more elements of the vector dj could
be set to 1. The parametric classifier GM generates a vector of tag
probabilities pi = GM(zi). Training involves adjusting the param-
eters of the model (C and M) so that these probabilities associated
with the true tags is maximized for the target word. This is achieved
by maximizing the likelihood of the training data.

In particular, let the symbol ⊗ denote the operation of component-
wise multiplication of two vectors. For the sample i we define qi as
the index corresponding to the largest element of the vector pi ⊗ yi.
Then the likelihood associated with the i-th training sample under
the model and the dictionary is given by

pi = [GM(zi)]qi =
e

o
qiP

j eoj
. (1)

The likelihood of the entire training set is given by

L =
NY

i=1

pi =
NY

i=1

[GM(zi)]qi =
NY

i=1

e
o

qiP
j eoj

, (2)

which is maximized by minimizing the negative log likelihood loss

L = − log L =
1

N

X
i=1

 
−oqi + log

X
j

eoj

!
, (3)

with respect to the parameters M and C, using stochastic gradi-
ent descent algorithm. In particular each epoch of training (a single
pass through the entire training set) is composed of two phases. In
Phase 1: the matrix C is kept fixed and the loss is minimized with
respect to the parameters M of the classifier using stochastic gra-
dient descent algorithm. In Phase 2: the parameters M are fixed
and the loss is minimized with respect to the matrix C, again using
stochastic gradient descent. However instead of randomly picking a
training samples during each step of gradient descent, we follow the
curriculum learning strategy described in the next section to select
the examples based on the ambiguity of the target word.

3. CURRICULUM LEARNING

Concept learning in humans is based on a training regime that is not
random but relies on a highly structured education system. Chil-
dren are first taught simple concepts and as they achieve a level of
mastery, move to learning more complex concepts. This learning
strategy has been validated in the “less is more” hypothesis by psy-
cholinguists investigating language acquisition [13] as well as by
educational psychologists following the scaffolding theory [14].

The question of whether machine learning algorithms can ben-
efit from such an organized training strategy, has been explored by
a number of researchers at the intersection of machine learning and
cognitive science. This question was recently revisited in [9], where
they formally coined the term Curriculum Learning. The basic idea
is to start the training process of a model using “easy” samples to
learn simpler aspects of the task, and gradually move to “harder”
samples to learn more complex aspects. They formalize the defini-
tion of “easy” and “hard” from the viewpoint of Continuation Meth-
ods [15]. According to their definition, a training regime can be
classified as a Curriculum if over a period of time, the entropy of the
example set used for training increases monotonically.

We structure the curriculum for our task of weakly supervised
part-of-speech tagging as follows. We start the model training using
stochastic gradient descent with samples that consist of words which
have only one POS tag in the dictionary (i.e. no ambiguity). Af-
ter training the model for some number of epochs on these training
samples, we grow the learner’s training set (and hence increase its
entropy) by adding in examples of words which have two POS tags
in the dictionary (i.e. an ambiguity of one) and train the model until
convergence. We follow this training regime with ever increasing
size of the training set until all the available samples are included in
the learner’s training set. Table 1 lists a subset of words grouped ac-
cording to the stage of the curriculum in which they are considered
during training based on the ambiguity in their tags.

4. EXPERIMENTS AND RESULTS

We use the Penn Treebank part-of-speech (POS) corpus [16] for the
experiments in this paper. For evaluating the model, we used the test
set commonly used on this task [6] which consists of 24, 115 words.
We used the same dictionary of word-to-tags association as in [6].
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Table 1. Subset of target words according to the stage of the curricu-
lum (C-stage) (up till stage 4) to which they belong.

C-stage Word - (Tags)

1
bullishness - (NN), hard-hit - (JJ),

rectified - (VBN), crunched - (VBD),
Prince - (NNP), relish - (VBZ)

2
interbank - (JJ, NN), narrowed - (VBN, VBD),
Indonesia - (NNP, NN), bites - (NNS, VBZ),

processes - (NNS, VBZ), embarked - (VBN, VBD)

3
triple - (RB, VB, JJ), processed - (VBN, VBD, JJ)
Silver - (NNP, JJ, NN), following - (VBG, JJ, NN)

stop - (VBP, VB, NN), man - (UH, VB, NN)

4
protected - (VBN, VBD, VB JJ)
British - (NNPS, NNS, NNP, JJ)

right - (ADV, RB, JJ, NN)

We replaced the tag associated with each word in the labeled train-
ing set of around 1.1M words with the tags associated with that word
in the dictionary. This resulted in an ambiguously tagged sentence
corpus. The average POS ambiguity per word with this transforma-
tion is 2.3 tags/word. We note that the objective of the model training
is to accurately resolve this ambiguity on both the training and test
set.

The architecture of the neural network we used is shown in Fig-
ure 1. The dimension of the latent space onto which the words were
embedded was set to 25. The classifier layer consisted of a fully con-
nected hidden perceptron layer followed by a linear layer, followed
by a soft-max non-linearity. The number of units in the perceptron
layer was 400, and the linear layer had 47 units (equal to the number
of classes). Since the performance of the system on the tuning set
was fairly robust to the values of these hyper-parameters (the size of
the embedding, the size of each hidden layer, and the learning rate
of embedding and classifier), they were fixed for all the experiments.
The learning rates of the classifier and embedding layers were set to
5 × 10−5 and 1 × 10−3 respectively, and were decreased by half
after every 10 epochs. In the curriculum, the number of epochs after
which samples with higher ambiguity were added was set to 5.

Due to the high non-linearity of the model different initializa-
tions could potentially lead to different local minima, resulting in
vastly different task accuracy. To alleviate this problem, we trained
several models independently, each initialized with a different set of
random word embedding and classifier parameters, and the model
which performed the best on the tuning set was selected as the final
model for evaluation.

4.1. Performance on the Test Set

The tagging accuracy of our model, along with the accuracies of a
number of other state-of-the-art models is summarized in Table 2.
The POS tagging accuracy of our model with curriculum learning
(CNet+CL) is superior to the bigram EM-HMM, trigram EM-HMM,
and the Bayesian HMM models. The models CE+spl and IP+EM
that outperform our model have incorporated certain global charac-
teristics. In particular the CE+spl train a log-linear model with ac-
cess to the full sequence of POS tags of a sentence, while the IP+EM
model exploits the idea of minimizing the POS bigrams across the
entire corpus. The results in the table are particularly noteworthy
when one considers the fact that unlike other models, our proposed
model is quite simple and does not exploit any grammar constrains.
The simplicity of the model is that it is entirely lexically driven with
no dependencies on the POS tag sequence. We attribute the per-
formance of the model to the lexical representations that are learnt
jointly with the discriminative non-linear architecture trained to op-

timize the POS tagging accuracy. We expect exploiting such global
information within our model would likely improve the tagging ac-
curacy even further. Lastly, it is interesting to note that the model
without curriculum learning (CNet), where training samples are pre-
sented in no particular order is far inferior to all other models. This
point is discussed further in Section 4.3.

Table 2. POS tagging accuracy of various models on the standard
test set. EM - bigram: EM with a bi-gram tag model; EM - trigram:
EM with 3-gram tag model; BHMM: Bayesian HMM with Sparse
Priors [4]; CE+spl: Contrastive Estimation with Spelling Model [7];
InitEM-HMM: EM with good initialization [5]; IP+EM: EM with In-
teger Programming [6]; CNet: Connectionist Network; CL: Curricu-
lum Learning; CD: Clean Dictionary; GC: Grammar Constraints.

Model Percentage Accuracy
using 47 tags

EM - bigram 81.7
EM - trigram 74.5

BHMM [4] 86.8
CE+spl [7] 88.6

InitEM-HMM [5] 91.4
IP+EM [6] 91.6

CNet 67.72
CNet + CL 88.34

CNet + CL + CD 90.55
CNet + CL + CD + GC 90.80

4.2. Performance on Pruned Dictionary

Upon analyzing the errors resulting from CNet+CL model, we found
that the model was incorrectly tagging all the instances of the func-
tion words is and an. The word is was tagged as NN , and the word
an was assigned the tag COMMA . Indeed, the words is and an
are mistagged in their respective dictionary entries: (is: NN, VBZ),
and (an: COMMA , DT). The reason behind the model wrongly
tagging all the instances of these words can be attributed to its greedy
nature. When the model sees the word is for the first time, the latent
embedding associated with the word is random, and the choice be-
tween the tags NN and VBZ is made based on the conditional proba-
bilities assigned to them, which at initialization are close to random.
Thus with a 50% chance, the model might pick the wrong tag and
back-propagate the gradients. When this happens the model will
never be able to correct its mistake and pick the right tag ever again.

After removing such erroneous entries from the dictionary
as suggested in [5], the test accuracy of our model improved to
90.55%. Note that in Table 2 the performance of 91.4% reported
in [5] uses such a pruned dictionary along with other language
specific and linguistic constraints.

4.3. Impact of Curriculum Learning

In Figure 2, we plot the error rate on the test set for the two models
trained with and without curriculum learning. For the model trained
with curriculum learning there is a sharp drop in error rate at the
end of every fifth epoch. This is when new samples with increas-
ing ambiguity were added to the training set. However, note that the
model trained with random selection of training examples, saturates
at a very high error rate. The reason for this behavior is that once
the model choses an incorrect POS tag for the target word and ad-
justs its parameters accordingly, this wrong choice is reinforced in
subsequent iterations with no possibility of recovery. For a model
trained using curriculum learning strategy, this possibility of error is
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Fig. 2. Plot showing the test error rates as a function of the number
of training epochs when the machine is trained using curriculum
learning (solid red line) and non-curriculum learning (dashed blue
line).

greatly reduced due to first training on lower ambiguity words before
training on higher ambiguity words.

Lastly, once the representations of the words and the parame-
ters of the classifier layer are learnt, the process of decoding a new
sample involves a single forward propagation step. This step is com-
posed of a few matrix vector multiplications and addition operations.
At no point does our model make use of any tag sequence informa-
tion and hence avoids any form of viterbi decoding. This makes the
architecture very efficient during decoding. In particular, our model
is capable of tagging 7945 words per second on a Xeon7550 ma-
chine.

5. DISCUSSIONS AND CONCLUSIONS

We presented a novel method for weakly supervised training of
neural networks for part-of-speech tagging using a dictionary. Our
method makes use of an organized training regime, called Curricu-
lum Learning, to train the neural network while at the same time
training a distributed embedding of the words. We have demon-
strated that the performance of our model is similar to the state-of-
the-art models which use global constraints of the task, while the
model outperforms previously explored expectation-maximization
techniques, using entirely lexical information.

As noted in the introduction, many speech and language tasks
are solved using machine learning techniques which have benefitted
from availability of annotated data. However, data annotation for
supervised machine learning is tedious and expensive. As the com-
plexity of tagging tasks increases, supervised annotation becomes
harder to assure correct accuracy. The technique presented in this
paper addresses this issue directly by not requiring a supervised data
set.

The technique used in this paper might also be used for another
disambiguation task called Supertagging. The idea of supertagging
is to annotate words with syntactic structures that can easily lead to
a syntactic parse and subsequently an interpretation of a sentence.
The supertagging task naturally lends itself to curriculum learning.
Learning can begin with supertags that have limited structure and
subcategorization frames such as intransitive verbs. As the network
learns, the more complicated supertags can be presented as training
samples to the network.

While the performance of the model is based entirely on lexical
information, it stands to question as to whether the performance
can be further improved using global or long-distance constraints.
As a preliminary experiment, we used the tag-tag constraints as a

post-process and applying it to the output of the learnt model gave
marginal improvement (last row Table 2). We believe that we could
improve the results of the model by exploiting these constraints
within the training loop in a more principled manner. Another ex-
tension would involve initializing the embedding more intelligently
(for instance, the embedding obtained from training a neural net-
work language model), as opposed to randomly, in order to avoid
the optimization settling for a poor local minima.
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