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ABSTRACT

This paper proposes a novel method for multi-view face

pose classification through sequential learning and sensor

fusion. The basic idea is to use face images observed in

visual and thermal infrared (IR) bands, with the same sam-

pling weight in a multi-class boosting structure. The main

contribution of this paper is a multi-class AdaBoost classi-

fication framework where information obtained from visual

and infrared bands interactively complement each other. This

is achieved by learning weak hypothesis for visual and IR

band independently and then fusing the optimized hypothesis

sub-ensembles. In addition, an effective feature descriptor

is introduced to thermal IR images. Experiments are con-

ducted on a visual and thermal IR image dataset containing

4844 face images in 5 different poses. Results have shown

significant increase in classification rate as compared with an

existing multi-class AdaBoost algorithm SAMME trained on

visual or infrared images alone, as well as a simple baseline

classification-fusion algorithm.

Index Terms— multi-class AdaBoost, weak hypothesis

fusion, sub-ensemble learning, visual and infrared images, se-

quential learning

1. INTRODUCTION

Multi-view face pose classification has drawn increasing re-

search interest in recent years, largely driven by many appli-

cations such as robotic surveillance [1], monitoring of driver

attentiveness [2] or automating camera management [3].

Several face pose classification methods have been pro-

posed and developed recently. [4] uses PCA-based face fea-

tures and soft margin AdaBoost to detect the frontal views.

[5] extracts features inspired by [6] and builds five sepa-

rate AdaBoost classifiers for face images in each class. [7]

presents a nested cascade detector for face poses in 5 classes

using confidence-rated AdaBoost [8] based on Haar features.

[9] introduces a tree-structured classifier for face poses in

7 classes, and each node is a three-class classifier trained

by AdaBoost.MH. [10] suggests a subspace learning ap-

proach for feature extraction and classifies five different face

poses by k-NN technique. Good results have been achieved,

however, these methods mainly adopt one-against-all or one-

against-one strategies for multi-class problems, so model

complexities may be increased.

To improve the classification of objects, approaches are

proposed on fusion of visual and infrared information. [11],

[12] and [13] present fusion methods at the sensor level. [14]

uses decision fusion of neural classifiers for real time face

recognition. [15] introduces fusion scheme at different levels

for SVM-based obstacle classification. These methods usu-

ally combine multiple individual features or decisions in a

one-off manner, however, the interactive relations between vi-

sual and infrared observations are seldom considered. Despite

these efforts, classifying face poses using both visual and in-

frared observations remains an open issue.

To tackle these problems, we propose a novel method

fusing visual and infrared information interactively within a

boosting framework for multi-view face pose classification.

Different from one-against-all or one-against-one strategies,

our model is similar to SAMME [16] in true solution to multi-

class problems, however, a new part of sensor fusion is intro-

duced. The main contributions of this paper include using

sub-ensemble learning for fused hypothesis optimization and

suggesting effective feature for thermal IR image. Improved

classification results are demonstrated by empirical evalua-

tion compared with SAMME using visual or infrared images

alone, as well as a simple baseline classification-fusion algo-

rithm.

The rest of this paper is organized as follows: Section

2 gives a big picture of the proposed framework; Section 3

makes some review of AdaBoost algorithms; Section 4 de-

scribes our fusion strategy; Section 5 describes feature ex-

traction for thermal IR images; Section 6 shows experiment

results on a visual and thermal IR image dataset and compar-

isons with most relevant existing method; finally Section 7

concludes the paper.

2. PROBLEM FORMULATION: THE BIG PICTURE

As shown in Fig.1, the proposed framework consists of three

major parts: (a) independent weak hypothesis learning using

visual and infrared features with the same sampling weight;

(b) fusion by optimizing hypothesis sub-ensemble; (c) adding

sub-ensemble to a final strong classifier and updating sam-
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Fig. 1. Block diagram of proposed scheme. The dashed box represents

boosting structure. The notations x1
i , x2

i , Ci denote visual features, infrared

features, and predicted class labels of i-th object, respectively.

pling weight distribution with a scale factor. The essence for

using the same sampling weight is to force weak classifiers for

both visual and infrared bands to focus on the same objects,

therefore weak hypotheses independently learned from visual

and infrared features match each other. The basic idea for

hypothesis optimization is to add hypotheses for both bands

to the sub-ensemble, with sub-ensemble weights according to

their accuracies, so that hypothesis sub-ensemble may have

enhanced performance based on fusion of visual and infrared

information. In this way, the final strong ensemble may have

further improved accuracy. The main motivation for using a

scale factor to update sampling weights is to make weak clas-

sifiers focus on those difficult objects misclassified in both

visual and infrared bands. The main novelty lies in two-stage

ensemble learning within multi-class boosting framework, by

using visual and infrared information in this interactive man-

ner, which may lead to better classification results.

3. ADABOOST: REVIEW

This section briefly reviews AdaBoost algorithms, with em-

phasis on SAMME, which our proposed classification method

is built upon.

AdaBoost is an ensemble learning method originally

intended only for binary problems. Many extensions of Ad-

aBoost for multi-class problems exist, and most of them have

been restricted to using one-against-all or one-against-one

strategies [17]. SAMME, one of the true multi-class Ad-

aBoost algorithms, is a true multi-class classifier that solves

multi-class problems without reducing them to multiple bi-

nary subproblems.

Let X = {xi}, i = 1, 2, ..., N be the entire training

set containing feature vectors of objects. Let the class la-

bel (denoted by c) be represented as a K-dimensional vector

y = (y1, y2, ..., yK)T , where yk = 1 if c = k, otherwise

yk = −1/(K − 1), k ∈ {1, 2, ...,K} and K ≥ 3 is the num-

ber of classes. In such a way, Y = {yi} is an equivalent set

of class labels corresponding to X. The output of weak clas-

sifier for each feature vector is encoded in the same way as

the weak hypothesis h = (h1, h2, ..., hK)T .

The goal is to minimize the objective function as expo-

nential loss function L(Y,H) =
∑N

i=1 exp
(− 1

KyT
i H(xi)

)
by learning a strong ensemble

H(t)(xi) = H(t−1)(xi) + α(t)h(t)(xi) (1)

subject to the constraint
∑K

k=1 Hk(xi) = 0. Several boost-

ing rounds t = 1, ..., T is applied. In each boosting round,

the sampling weight D
(t)
i for each feature vector of objects,

weighted errors ε(t) for the weak classifier and the ensemble

weight α(t) for each hypothesis that is added to the ensemble

are updated as follows:

D
(t)
i = exp

(
− 1

K
yT
i H

(t−1)(xi)

)
(2)

ε(t) =

N∑
i=1

D
(t−1)
i I(yT

i h
(t)(xi) ≤ 0)/

N∑
i=1

D
(t−1)
i (3)

α(t) =
(K − 1)2

K

(
log

1− ε(t)

ε(t)
+ log(K − 1)

)
(4)

where I(A) is an indicator function which equals 1 if event A
is true, and 0 otherwise.

4. MULTI-CLASS BOOSTING WITH WEAK
HYPOTHESIS FUSION

A sub-ensemble learning method fusing weak hypotheses

learned from visual and infrared features under multi-class

AdaBoost framework is introduced in this section. Each

object feature vector xi contains two component feature vec-

tors {x1
i ,x

2
i }, corresponding to visual and infrared bands,

respectively.

In the proposed method, we enforce a same set of sam-

pling weights to the weak classifiers for both visual and

infrared bands on the same objects, therefore weak hypothe-

ses independently learned from visual and infrared features

match each other, yielding hm(xm
i ), m = 1, 2. Different

from multiple AdaBoost classifiers trained on single-band

features with independent sampling weights, the interaction

between visual and infrared information in our case is con-

ducted at each boosting round inside the boosting structure.

The objective criterion of the proposed scheme is to min-

imize the exponential loss function

L(Y,h) =

N∑
i=1

exp

(
− 1

K
yT
i h

(t)(xi)

)
(5)

through learning a sub-ensemble of weak hypotheses

h(t)(xi) =

M∑
m=1

β(t)
m h(t)

m (xm
i ) (6)

subject to the constraints
∑K

k=1 hk(xi) = 0 and
∑M

m=1 β
(t)
m =

1, M = 2. The solution is shown to be:

β(t)
m =

log
(

1−ε(t)m

ε
(t)
m

(K − 1)
)

log
(
(K − 1)M

∏M
m=1

1−ε
(t)
m

ε
(t)
m

) (7)

where
ε(t)m =

N∑
i=1

I(yT
i h

(t)
m (xm

i ) ≤ 0)/N (8)

βm is the sub-ensemble weight for each single-band weak hy-

pothesis that is added to the sub-ensemble and εm is the error

rate for each single-band weak hypothesis.

A scale factor γ
(t)
i is then introduced for xi, which is ex-

ponentially proportional to the count of misclassification by

the two weak classifiers

γ
(t)
i = 2ηi (9)
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where ηi =
∑M

m=1 I(h
(t)
m (xm

i ) �= yi). In such a way, objects

correctly classified by weak classifiers in both visual and in-

frared bands lose more weights, and objects misclassified by

both weak classifiers are treated as difficult objects by gaining

more weights:

D
(t)
i = γ

(t)
i D

(t−1)
i exp

(
− 1

K
β(t)yT

i h
(t)(xi)

)
(10)

Table 1 summarizes the pseudo code of the proposed scheme.

Training process:
Input: training set X, label set Y and #iteration T .

1. Initialization: sampling weights D
(0)
i = 1/N, i = 1, 2, ..., N

and ensemble H(0)(xi) = 0 ∈ R
K .

2. For t = 1 to T (boosting round):

(a) Learn single-band weak hypothesis h
(t)
m (xm

i ) with

D
(t−1)
i ;

(b) Compute error rate ε
(t)
m for each single-band weak hypoth-

esis by (8);

(c) Set sub-ensemble weight β
(t)
m by (7);

(d) Fuse optimized hypothesis sub-ensemble h(t)(xi) by (6);

(e) Compute weighted error for fused hypothesis ε(t) by (3);

(f) Set ensemble weight for fused hypothesis α(t) by (4);

(g) Add to ensemble H(t) according to (1);

(h) Update sampling weights D
(t)
i by (10) and re-normalize,

where the scale factor γ
(t)
i is obtained from (9);

End
Output: parameters of trained classifier h

(t)
m , β

(t)
m , α(t).

Test Process:
Input: a new pair of test images xj in the test set

Repeat: the boosting round in Step 2 above, using fixed classifier’s

parameters obtained from the training process;

Output: class label k∗ = argmaxk Hk(xj) for xj .

Table 1. Pseudo code of multi-class boosting with weak hypothesis fusion.

5. FEATURE DESCRIPTOR FOR IR IMAGE

Thermal infrared images present different characteristics

from those in visual band images, e.g. blurred edges and

lack of texture information (as shown in Fig.3). Viewing the

Fig. 2. A bank of Gabor wavelets in (a) frequency domain and (b) real parts

in spatial domain.

special nature of thermal IR images, special feature descrip-

tors that are effective should be explored. We propose in

this paper to use Gabor wavelet features. The idea here is

that a bank of Gabor wavelets with appropriately specified

frequency bands and orientations is used to characterize an

IR image, which may extract salient features in thermal IR

images due to the spatial locality, frequency selectivity and

orientation selectivity [18]. DC component is added as a

feature component covering the lower frequency band. Fig.2

shows the Gabor wavelets in frequency domain and real part

in spatial domain. To further reducing the feature dimension,

we then apply PCA (principal component analysis) to Gabor

features from each IR image.

6. EXPERIMENTAL RESULTS

Dataset: A total of 2422 visual and 2422 thermal infrared

images are used. Detail about the dataset split to each class is

given in Table 2. Fig.3 shows some example images.

Face pose #Visual images #IR images

Front 506 506

Left 500 500

Right 500 500

Up 456 456

Down 460 460

Table 2. Visual and thermal IR face image dataset containing five poses.

Fig. 3. Example face images of visual and thermal IR bands with five poses.

Setup: All face images are manually cropped and normal-

ized to 32 × 32 pixels in gray-scale images. Gabor wavelets

with 3 frequency bands (1.5 octave bandwidth) are used for

extracting visual and infrared features. The number of orien-

tations is 8 for each image. The down-sampling rate is 4 in

each (horizontal/vertical) direction. PCA is applied to Gabor

feature vectors retaining average of 95% energy. Images in

the dataset are partitioned into 2 sets, i.e. 60% of images in

each class are used for training, the remaining 40% are used

for testing.

Results and comparisons: Table 3 and 4 show the classi-

fication results from the proposed scheme on the testing set

by using visual and thermal IR images as compared with (a)

SAMME using visual images only; (b) SAMME using in-

frared images only; (c) a simple baseline classification-fusion

algorithm. The simple baseline classification-fusion algo-

rithm is obtained by training sub-classifiers Hm(xm
i ) with

independent sampling weights for visual features x1
i and IR

features x2
i . The class label is then determined according

to k∗ = argmaxm,k Hm,k(x
m
i ), where Hm,k(x

m
i ) is the

k-th element of sub-classifier Hm(xm
i ). Fig.3 shows the

curves of the corresponding classification error as a function

of boosting rounds for all these four cases on the testing set.

Results from Table 3 and 4 show that the proposed classi-

fier improves the average classification rate as comparing with
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Method Dataset Classification rate (%)

SAMME(V) Visual 87.31

SAMME(IR) IR 92.44

Baseline classification-fusion Visual+IR 93.90

Proposed Visual+IR 96.20

Table 3. Comparison of different methods: average classification rate on

the testing set (V: Visual).

False positive rate (%)

Method Front Left Right Up Down

SAMME(V) 14.01 10.70 9.55 13.35 16.14

SAMME(IR) 12.18 5.30 3.70 8.30 8.42

Baseline classification-fusion 12.38 3.00 5.50 4.95 4.35

Proposed 6.09 2.20 1.90 4.62 4.29
False negative rate (%)

Method Front Left Right Up Down

SAMME(V) 15.10 7.03 7.28 11.35 22.19

SAMME(IR) 13.15 3.02 1.78 9.64 9.80

Baseline classification-fusion 9.23 1.52 3.08 8.95 7.85

Proposed 7.33 1.66 0.71 2.85 6.38

Table 4. Comparison of different methods: false positive rate and false

negative rate for each class on the testing set.
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Fig. 5. Dimension of IR image features vs. the average classification rate.

Red curve: final classification rate from proposed scheme when the feature

dimension of IR images changes meanwhile the feature dimension of visual

band (386 in our tests) is fixed; Blue curve: the classification rate when the

classifier only uses IR images with specified feature dimension.

SAMME(V), SAMME(IR) and the baseline fusion-classifier.

Observing Fig.4 shows that the proposed classifier has a fast

convergence speed with the lowest classification errors. Fur-

ther, Fig.5 shows that using the Gabor feature descriptor for

IR images is very efficient in the proposed classifier. It allows

very low dimensional features for IR images without signifi-

cantly reducing the final classification rate.

7. CONCLUSION

The proposed multi-class classification method, using fused

hypotheses from visual and IR information in a unified multi-

class AdaBoost, is shown to be effective in obtaining high

classification rate with low false alarm in our experiments.

Our results have also shown that the proposed feature de-

scriptor for IR images is very effective. Comparison with an

existing and most relevant AdaBoost algorithm SAMME on

visual or IR face image dataset alone as well as a baseline

classification-fusion algorithm has provided further evidence

on the effectiveness of the proposed method. Future work will

be conducted on testing on more datasets.
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