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ABSTRACT 

To improve the limitation of linear regression classification, 
a class specific kernel linear regression classification is 
proposed for low resolution face recognition under variable 
illumination. The nonlinear mapping function enhances the 
modeling capability for highly nonlinear data distribution. 
The explicit knowledge of the nonlinear mapping function 
can be avoided computationally by using the kernel trick. 
With kernel projection, the class label is also determined by 
calculating the minimum reconstruction error. Experiments 
carried out on Yale B facial database in size of 8×8 pixels 
reveal that the proposed algorithm outperforms the state-of-
the-art methods and demonstrates promising abilities against 
severe illumination variation. 

Index Terms—Kernel Linear Regression, Low 
Resolution Face Recognition, Illumination Variation 

1. INTRODUCTION 

Automatic face recognition systems [1] are designed 
to distinguish a specific identity from the unknown objects 
characterized by face images. Numerous studies have been 
greatly interested in automatically recognizing faces from 
still or video images. In realistic situations, face recognition 
may encounter many great challenges, especially the low 
resolution problem, which could be caused by environments 
and capture devices at a distance. Additionally, the low 
resolution problem might be coupled with other effects such 
as illumination variation. Our method accounts for low 
resolution face recognition under illumination variation. 

In the literature, numerous researches have been 
proposed to achieve successful face recognition. These 
approaches could be categorized into two categories namely 
reconstructive and discriminative methods. The 
reconstructive approaches such as principle component 
analysis (PCA) [2-4] and independent component analysis 
(ICA) [5-7] have been reported to be robust for the problem 
related to noisy pixels. The discriminative approaches such 
as linear discriminant analysis (LDA) [3], [4] have been 
known to yield better results in clean conditions. Moreover, 

many variants such as kernel PCA (KPCA) [8-10] and 
kernel LDA (KLDA) [10-12] have been presented to 
achieve higher performance. These kernel methods enhance 
the modeling capability by nonlinearly mapping the data 
from the original space to a very high dimensional feature 
space, the so-called reproducing kernel Hilbert space 
(RKHS). Therefore, the KPCA and the KLDA by 
nonlinearly mapping could utilize high-order statistics, 
whereas the PCA and LDA only utilize the first and second-
order statistics. Thus, for highly nonlinear data distribution, 
these kernel methods are more suitable. 

Recently, a linear regression classification (LRC) 
algorithm [13] has been proposed for face recognition, 
which is based on that face images from a specific class are 
known to lie on a linear subspace [3], [14]. The regression 
coefficients are estimated by using the least square method, 
and then the decision is made in favor of the class with the 
minimum reconstruction error. Experiments reported have 
shown that the down-sampled image could be used for 
classification directly. However, as the results reported, the 
LRC could not withstand severe illumination variations.  

To conquer the difficulty of illumination variations in 
face recognition, a variety of approaches have been 
proposed to solve the problem [3, 14, 15-20]. For instance, 
histogram equalization (HE), Gamma correction, logarithm 
transform, etc. are widely used for illumination 
normalization. Edge maps, derivatives of the gray-level, 
Gabor-like filters, and the LDA are well-known illumination 
invariant feature extraction methods. As to face modeling, 
the illumination cone method and the spherical harmonic 
model have been proposed. To the best of our knowledge, 
these methods could not work for low resolution problem 
well because of losing the important detail information 
under low resolution. 

In this paper, we propose a novel face recognition 
algorithm to overcome the limitation of the LRC [13] by 
applying the kernel method for linear regression. Our 
method can be treated as an illumination invariant feature 
extraction method because the proposed approach can 
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achieve variable lighting face recognition without any 
preprocessing of illumination normalization and 
compensation.  

The rest of this paper is organized as follows. Section 
2 reviews the LRC approaches. Section 3 formulates the 
proposed kernel linear regression classification (KLRC). 
Section 4 gives experimental results. Finally, we draw 
conclusions in Section 5. 

2. LINEAR REGRESSION CLASSIFICATION (LRC) 
Assume we have N subjects with ip  training images 

from the ith class, i = 1, 2, …, N. Each gray scale training 
image is in size of ba ×  and is represented as ba

ji
×

ℜ∈,v , i 
= 1, 2, …, N and j= 1, 2, …, ip . Each training image is 
down-sampled to an order of dc ×  and ba

mi
×

ℜ∈,v  is 
transformed to column vector 1

,
×

ℜ∈
q

jiw , where q = cd, 
and ab > cd. Each column vector is normalized so that 
maximum pixel value is 1. In order to apply linear 
regression to estimate class specific model, we have to stack 
the column vectors ji,w  regarding the class-membership. 
Hence, for the ith class, we have 

  i

i

pq
pijiii

×
ℜ∈= ],...,,...,[ ,,1, wwwW ,                 (1) 

where each vector ji,w  is a column vector of iW . Thus, in 
the training phase, the ith class is represented by a vector 
space iW , which is called the regressor or predictor for each 
subject. 

If y belongs to the ith class, it can be represented as a 
linear combination of the training images from the ith class 
and can be defined as 

Niii ,...,2,1, =+= eWy .                  (2) 

where 1×
ℜ∈ ip

i  is the vector of regression parameters and 
e  is an error vector that is an i.i.d. random variable with 
zero mean and variance 2

σσσσ . The goal of regression is to 
find i

~
, which minimizes the residual errors as  

NiyW iii
i

,...,2,1,minarg
~ 2

2
=−= .           (3) 

The regression coefficients can be solved through the least-
square estimation and can be written as a matrix form as 

NiT
ii

T
ii ,...,2,1,)(

~ 1
==

− yWWW .            (4) 

The estimated vector of parameters i
~

 and predictors iW  
are used to predict the response vector iy~  for the ith class as 

  Niiii ,...,2,1,
~~

== Wy .                       (5) 

By substituting (4) for i
~

 in (5), we have 

    NiT
ii

T
iii ,...,2,1,)(~ 1

==
− yWWWWy .            (6) 

Therefore, we can get a class specific projection matrix   as 
[21], 

    Niii ,...,2,1,~
== yHy ,                       (7) 

where iy~  is the projection of y  onto the subspace of the ith 
class by the projection matrix, iH = T

ii
T

ii WWWW 1)( − . It is 

noted that the projection matrix is a symmetric matrix and 
also idempotent. 

The LRC is developed based on the minimum 
reconstruction error. In other words, if the original vector 
belongs to the subspace of class i, the predicted response 
vector iy~  will be the closest vector to the original vector. 
The identity *i  could be determined by calculating the 
Euclidean distance measure between the predicted response 
vectors and the original vector as 

Nii i
i

,...,2,1,~minarg*
=−= yy                      

yyH −= i
i

minarg                                   (8) 

 

 
Figure 1.  Illustration of a mapping from R2 to R3. The left figure shows it 
is difficult to fit the data by a regression line because of nonlinear data 
distribution, whereas the right figure shows it is easy to fit the data by a 
regression plane because of linear data distribution. 

3. KERNEL LINEAR REGRESSION 
CLASSIFICATION (KLRC) 

The LRC has been demonstrated that it could achieve 
good performance for certain conditions, but not for severe 
illumination variations. This is because illumination 
variation makes the data distribution more complicated. 
Assume the original input space can always be mapped to 
some higher dimensional feature space where the data set is 
distributed linearly, As depicted in Fig. 1, the left figure 
shows it is hard to fit the data by a regression line because of 
nonlinear data distribution, whereas the right figure shows it 
is easy to fit the data by a regression plane because of linear 
data distribution by a mapping from R2 to R3. Thus, it can be 
expected that a nonlinear mapping prior to linear regression 
may improve the limitation of the LRC. 

So, the key methodology of the KLRC is to apply a 
nonlinear mapping function to the input column vector 

)( , jiwΦΦΦΦ
fq

ℜ→ℜ:  and then solve for LRC in the resulting 
feature space f

ℜ . Note that the dimensionality of the space 
f

ℜ  is arbitrarily large. 
Specifically, each column vector ji,w  is projected 

from the original space q
ℜ  to a high dimensional space f

ℜ  
by a nonlinear mapping function nffq

>ℜ→ℜ ,:ΦΦΦΦ . 
Therefore, f

ℜ  is now the space spanned by )( , jiwΦΦΦΦ . 
Therefore, the projected vectors can be used for regression 
as 

Niii ,...,2,1,)( == Wy ΦΦΦΦ .                     (9) 
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Because of the increase in dimensionality, the mapping 
)( , jiwΦΦΦΦ  is made implicitly by the use of kernel function 

satisfying Mercer’s theorem. By using dual representation 

i
T

ii ααααΦΦΦΦ )(W= , the projection stated in (9) becomes  

Nii
T

ii ,...,2,1,)()( == ααααΦΦΦΦΦΦΦΦ WWy               

,iiααααK=                                           (10) 

The kernel matrix iK  is positive semi-definite if it is 
constructed using Mercer kernel. Typically, kernels include 
polynomial kernel and Gaussian kernel, all of which satisfy 
Mercer’s theorem. By using singular value decomposition 
(SVD), we can discard the eigenvalues, which are too small, 
to reduce noise and prevent over fitting. Then, the low rank-
r singular value factorization of iK  is r

iK . In this paper, we 
discard 50% singular values. Then, we have 

i
r
iKy ≈  .                                  (11) 

The goal of regression is to minimizes the residual errors as 

.minarg~ 2

2
yK −= i

r
ii

iαααα

αααα                (12) 

This can be solved through the least-square estimation. 
Because r

iK  does not have full rank, the pseudoinverse can 
be used. So, we get 

,)(~ yK +
=

r
iiαααα                          (13) 

and because of low rank approximation, Ir
i

r
i ≠

+)(KK . The 

response vector iy~  for the ith class can be predicted by 

  .~~
i

r
ii ααααKy =                               (14) 

By substituting (13) in (14), therefore, we can obtain  

yPy ii =
~                                  (15) 

and get a class specific kernel projection matrix as 

,)( +
=

r
i

r
iiP KK                         (16) 

where iy~  is the projection of y  onto the kernel subspace of 
the ith class by the class specific kernel projection matrix, iP . 

The KLRC is developed based on the minimum 
reconstruction error. In recognition phase, the identity *i  
could be determined by calculating the Euclidean distance 
measure between the predicted response vectors and the 
original vector as 

Nii i
i

,...,2,1,~minarg*
=−= yy                  

yyP −= i
i

minarg                               (17) 

4. EXPERIMENTAL RESULTS 

We have examined our algorithm on publicly available 
face databases: the Yale Face Database B (Yale B) [18]. 
Also, we evaluate the proposed method against low 
resolution problem. All experimental results only reported 
the top 1 recognition accuracy (%).  

The Yale B contains images of 10 individuals with 9 
poses and 64 illuminations per pose. The frontal face images 
of all subjects, each with 64 different illuminations are used 
for evaluation. All images are cropped and resized to 8×8 
pixels, as shown in Fig. 2. The Yale B is divided into five 
subsets based on the angle of the light source directions. As 
a result, there are total 640 images: 70 (7 images per person), 
120 (12 images per person), 120 (12 images per person), 
140 (14 images per person), and 190 (19 images per person) 
images in Subsets 1 to 5, respectively. We follow the 
evaluation protocol as reported in [18]. Training is 
conducted using Subset 1 and the remaining subsets (Subsets 
2 to 5) are used for testing. 
  

 
Figure 2.  Ten samples in size of 8×8 pixels from each subset of two 
persons from the Yale B face database. 

 
In the experiments, we compare the proposed methods, 

KLRC(p) and KLRC(g), with LRC, PCA, KPCA(p), 
KPCA(g), LDA, KLDA(p), KLDA(g), and ICA, where p 
and g denote the polynomial kernel and Gaussian kernel, 
respectively. The results are depicted in Fig. 3, which 
reflects that the KLRC attains higher recognition rate than 
the LRC, PCA, KPCA, LDA, KLDA, and ICA for low 
resolution face recognition under variable lighting. 
Particularly, in Subsets 4 and 5, the KLRC has gained 
improvement significantly.  

It is noted that although it is widely accepted that the 
discriminant based approaches offer high robustness to 
lighting variation, they still cannot withstand severe 
illumination variation.  

5. CONCLUSIONS 

In this paper, we propose a class specific kernel linear 
regression classification for low resolution face recognition 
under variable lighting. Using the nonlinear mapping 
function enhances the modeling capability for highly 
nonlinear data distribution such as illumination variation. 
We have demonstrated that the proposed KLRC performs 
better than the LRC, PCA, KPCA, LDA, and KLDA for low 
resolution face recognition under variable lighting. In 
summary, the KLRC improves the limitation of the LRC 
dramatically for face recognition under severe illumination 
variations and could be an illumination invariant feature 
extraction method. 

Subset 1           Subset 2         Subset 3          Subset 4          Subset 5 
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The future research directions include the robustness 
issues related to expression and pose variations, and the 
reliable estimates of regression coefficients from a single 
training sample per class. On the other hand, the selection of 
the optimal kernel remains open. 
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