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ABSTRACT 
 

In this paper, a new age estimation framework considering the 
intrinsic properties of human ages is proposed, which improves the 
dimensionality reduction techniques to learn the connections 
between facial features and aging labels. To enhance the 
performance of dimensionality reduction, a distance metric 
adjustment step is introduced in advance to achieve a suitable 
metric in the feature space. In addition, to further exploit the 
ordinal relationship of human ages, the “label-sensitive” concept is 
proposed, which regards the label similarity during the learning 
phase of distance metric and dimensionality reduction. Finally, an 
age-specific local regression algorithm is proposed to capture the 
complicated aging process for age determination. From the 
simulation results, the proposed framework achieves the lowest 
mean absolute error against the existing methods. 
 

Index Terms—Machine learning, Distance learning, Pattern 
recognition 
 

1. INTRODUCTION 
 
Facial age estimation has attracted increasing attention in computer 
vision and pattern recognition because of its potential usages. An 
automatic age estimation system can not only facilitate the human-
computer interface, but also prevent under ages from accessing 
pornographic websites, cigarettes, and bears. In addition, the age 
attribute has also been applied in face verification and retrieval [8]. 

Estimating human ages is intrinsically a challenging task 
because of its multi-class nature, where an aging label can be seen 
as an individual class. This nature makes age estimation easily 
suffer from over-fitting when the size of database is insufficient. 
Furthermore, due to the diversity of personal aging processes, it is 
very difficult to design and determine the type of facial features 
that can directly represents human ages. To solve these problems, 
several previous work has been published in the past decade, and 
the algorithms are generally composed of two parts: Feature 
extraction [4][6][9][11] and age determination [2][5][10][13]. 

Besides these two main challenges, three important factors of 
age estimation should also be considered. At first, there exist the 
ordinal relationship and correlations among aging labels. For 
example, age 30 is closer to age 25 than age 10. This relationship 
makes age estimation more difficult than the traditional multi-class 
classification problems. Secondly, aging process is rather 
complicated, which may not be captured by a single classifier and 
regressor [5]. Finally, inside many aging databases, we found that 

the number of images of each age label is highly different, which 
may result in serious unbalanced learning. 

In this paper, a new age estimation framework is proposed, 
which takes all the above factors and challenges into consideration: 
 To avoid over-fitting and explore the connections between 

facial features and aging labels, locality preserving 
projection (LPP) [7] is exploited to drastically reduce the 
dimensionality of features and preserve the most important 
information for age estimation. 

 To better exploit the ordinal relationship, the “label-
sensitive” concept is proposed, which regards the label 
similarity during the learning phase of LPP. 

 To capture the complicated aging process, an age-specific 
local regression algorithm named KNN-SVR is proposed. 

 To alleviate the unbalanced problem, several treatments are 
proposed for each step in the proposed framework. 

In addition, to further enhance the performance of LPP, a distance 
adjustment step is introduced in advance to achieve a suitable 
metric for neighbor searching, which is an essential step of LPP. 

This paper is organized as follows: In Section 2, an overview 
of the proposed framework is presented, and the concept of “label-
sensitive” is introduced in Section 3. In Sections 4 and 5, the 
algorithms of distance metric adjustment and dimensionality 
reduction are described, and the proposed age-specific local 
regression is discussed in Section 6. Finally, the simulation results 
and conclusion are presented in Sections 7 and 8. 
 

2. FRAMEWORK OF THE PROPOSED 
ALGORITHM  

 
Given a training set ( )

1{ }n N
nI i with N facial images and its 

corresponding label set ( )
1{ }n N

nY y L with 1{ ,......, }cL l l , age 
estimation can be modeled as a supervised learning task. The 
symbol c is the total number of aging labels we concerned. 

In this paper, a new age estimation framework is proposed, 
which consists of four steps: Feature extraction, distance metric 
adjustment, dimensionality reduction, and age determination. 
Suggested by previous work, the active appearance model (AAM) 
[3] is adopted for feature extraction, which jointly considers the 
appearance and shape information from human faces and results in 
a feature vector dRx for each image i. Then, a distance metric 
adjustment step is introduced to learn a suitable metric in this 
feature space, which can enhance the performance of the following 
dimensionality reduction step. The resulting features after these 
two steps are denoted as xadjust R d and z R p. Finally, according 
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Fig.1 The flowchart of the proposed framework 

 
Fig. 2 The standard deviation of each AAM feature. 

 
to z R p, an age determination function is trained to estimate the 
aging label ŷ . The flowchart of this framework is plotted in Fig. 1. 
 

3. THE LABEL-SENSITIVE CONCEPT 
 

Before describing in detailed about the proposed framework, we 
first introduce the “label-sensitive” concept. In the traditional 
multi-class classification, a class is treated independently of other 
classes, and a uniform penalty is given when a sample is 
misclassified into any other classes. While in the task of age 
estimation, there intrinsically exists the ordinal relationship among 
human ages, and different penalties should be given for different 
misclassified cases. To better exploit this ordinal relationship in 
our work, the “label-sensitive” concept is proposed. 

During the learning phase of distance metric and 
dimensionality reduction, several statistical measures are required 
to compute for each class. Instead of treating each class 
individually, the “label-sensitive” concept claims that samples with 
similar class labels should also be considered in this process, and 
the weights of these samples are assigned based on the label 
similarity. For example, when computing the scatter matrix for age 
30, samples with ages around 30 are also regarded. In the 
following two sections, we will show how to embed this concept 
into distance metric learning and dimensionality reduction.  

 
4. DISTANCE METRIC ADJUSTMENT 

 
AAM [3] extracts the shape and appearance information from 
human faces, which may not directly correspond to aging labels. 
Besides, the dimensionality of AAM features is usually too high to 
train a robust age classifier or regressor. To overcome these 
problems, the popular locality preserving projection (LPP) [7] is 
exploited to learn the connections between features and labels and 
drastically reduce the feature dimensionality. LPP is a manifold 

Table 1: The algorithm of RCA 
Presetting: 
 Training set: ( )

1{ }n d N
nX Rx , ( )

1{ }n N
nY y L  

 Define iX  as the feature set containing all feature samples 
with label il . The number of samples in iX is denoted as iN . 

 RCA finds d d
RCAW R , then T d

adjust RCAW Rx x . 
Algorithm: 

 For each il , compute the mean 
( )

( )1
n

i

n
i

XiN x

x and the 

intra-class scatter
( )

( ) ( )1 ( )( )
n

i

n n T
i i i

Xi

S
N x

x x . 

 Compute the total scatter matrix
1

1 c

i i
i

S N S
N

. 

 Perform eigendecomposition TS V V , and ( 1/ 2)
RCAW V .

 
Table 2: The proposed lsRCA algorithm  

 Define the sample-class weight ( and are tunable): 
( ) 2 ( )

( ) exp( ( ) / ),  if 

0,  otherwise

n n
i in

i

y l y l
e  

 Modify the computation of ,  ,  and i iS S as: 

( ) ( )

1

1 N
n n

i i
ni

e x , ( ) ( ) ( )

1

1 ( )( )
N

n n n T
i i i i

ni

S e x x , and 

1 1
/

c c

i i i
i i

S S , where ( )

1

N
n

i i
n

e  

 Follow the algorithm of RCA to compute d d
RCAW R  

 
learning algorithm and aims to minimize the average neighbor 
distance after projection. Generally, manifold learning assumes 
that the input space is locally Euclidean and utilizes the Euclidean 
metric for neighbors searching, while this assumption may not be 
held. To ensure this, we simply check the standard deviation (STD) 
of each AAM feature. The result is shown in Fig. 2, which shows a 
strong variation of STD among these features. This observation 
destroys the assumption and may distort the computation of 
neighbor similarities as well as degrade the overall performance. 

To deal with this issue, general unsupervised treatments such 
as normalizing or scaling the STD can be used. While in our work, 
relevant component analysis (RCA) [1] is adopted because of its 
supervised nature and efficiency. RCA is a supervised distance 
metric learning algorithm, which aims at whitening each intra-
class scatter matrix and conducts a globally Euclidean metric 
inside each class. Although this metric cannot directly guarantee 
the locally Euclidean assumption, it does improve the overall 
performance in the experiments. The algorithm of RCA is 
summarized in Table 1. 

To further consider the ordinal nature, a label-sensitive form 
of RCA called lsRCA is proposed and summarized in Table 2, 
where the computation of i , Si , and S are modified. Finally, to 
balance the influence of each label in lsRCA, an unbalance-
compensated version called C-lsRCA is proposed, where the 
computation of S is replaced by 

1

1 c

i
i

S S
c

.                               (1) 
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Table 3: The proposed lsLPP algorithm 
Presetting: 
 Training set: ( )

1{ }n d N
adjust adjust nX Rx , ( )

1{ }n N
nY y L  

 Define the similar-label set for each sample ( )i
adjustx : 

( ) ( ) ( ) ( )( ) {   ,  }j j i
adjustN i y y j ix  

 Create an N N sample similarity matrix 1 ,[ 0]ij i j NB b  

 lsLPP finds d p
LPPW R , then T p

LPP adjustW Rz x . 
Algorithm: 
 Find the 1-nearestk samples of ( )i

adjustx in ( ) ( )N i  and denote 

these samples as ( )KNN i , where k1 is adjustable. 
 For each sample pair ( ) ( ){ , }i jx x , if ( ) + ( )j KNN ix or 

( ) + ( )i KNN jx , set: 
2( ) ( )

( ) ( ) 2exp( ) exp( ( ) / ).
i j

i j
ijb y y

t

x x
 

 Compute L D B , where D is diagonal with ii ij
j

d b . 

 Compute the generalized eigendecomposition:  
( ) ( ) ( )T i i T i T TXLX XDX XLX V XDX Vv v  

, where is arranged in the descending order. 

 ( 1) ( 2) ( )
( ), ,......, | .

TN p N p N
LPP p N p p pW V O Iv v v  

 
5. DIMENSIONALITY REDUCTION 

 
The usage of RCA or its modified versions results in a suitable 
metric, where the Euclidean distance now can be applied for 
neighbor searching in LPP [7]. Originally, LPP is an unsupervised 
dimensionality reduction technique, which can be modified into a 
supervised formulation by searching neighbors with the same class 
label. To take the ordinal nature into consideration, the label-
sensitive concept is applied in LPP and achieves an improved 
version named lsLPP, where the same-label constraint is replaced 
by a similar-label one. In addition, lsLPP defines a new neighbor 
weighting function, which regards both the feature and label 
similarity between neighbors. Table 3 summarizes this algorithm, 
where ,  ,  and t are tunable for feature and label similarity. 

To balance the influence of each label, we modify the 
neighbor size k1 and the similarity range for each sample based 
on the number of samples of the corresponding label. These two 
treatments may result in asymmetric B and L, which disobeys the 
definition of graph Laplacian. To overcome this situation, B is 
simply replaced by (B + BT) / 2 before computing L. 
 

6. AGE DETERMINATION 
 

After lsLPP, the resulting p-dimensional vector z (p is usually 
much smaller than d) now can be used to train an age 
determination function. To capture the complicated aging process, 
the proposed framework utilizes local regression instead to global 
regression for age determination. Inspired by the work in [12] and 
the L1 loss of support vector regression (SVR) emphasized in [5], 
an age-specific local regression algorithm named KNN-SVR is 
proposed and summarized in Table 4.  Now given a new image, 

 

Table 4: The proposed KNN-SVR algorithm 
Presetting: 
 Training set: ( )

1{ }n p N
nZ Rz , ( )

1{ }n N
nY y L  

Algorithm: (k is tunable) 
 For a query z, find its k-nearest neighbors ( ) ( )

1{ , }i i k
KNN KNN nyz in Z.

 Train an RBF-kernel SVR regressor based on ( ) ( )
1{ , }i i k

KNN KNN nyz , 
and use it to predict the age for z. 

 
Table 5: The definitions of MAE and CS 

Test set ( ) ( )
1 1:  { } ,  { }t tN Nn n

test n nI Y y Li�  

MAE 
( ) ( )

1

1MAE
tN n n

nt

y y
N

 

CS 
( ) ( )

1

11( ) , where 
0

tN n n

nt

true
CS j y y j

N false

 
the extracted AAM features are processed by RCAW and LPPW in 
order. Finally, the age is estimated by the proposed KNN-SVR. 
 

7. SIMULATION RESULTS 
 

The age estimation experiments are performed on the most widely-
used FG-NET aging database [14], which contains 1002 facial 
images from 82 individuals and provides 68 landmarks on each 
face. These images are ranging from age 0 to age 69, while more 
than 700 of them are under age 20, which makes the FG-NET 
database highly unbalanced. 

Suggested by the experimental setup in previous work, the 
leave-one-person-out (LOPO) testing strategy is adopted, where 
the estimation algorithm is repeatedly trained on images from 81 
people and tested on images of the remaining person. To evaluate 
the performance, two popular measures, mean absolute error 
(MAE) and cumulative score (CS), proposed in [4] are computed 
for each age estimation algorithm. MAE computes the average L1 
loss during testing, which fits the loss function of SVR and that is 
why we adopt SVR in the proposed local regression algorithm. 
The formulations of MAE and CS are defined in Table 5. 

The experiments in this paper are conducted in two stages. At 
first, we test different algorithm combinations in the proposed 
framework to demonstrate the improvements achieved by the 
usage of RCA and the proposed C-lsRCA, lsLPP, and KNN-SVR. 
Then, the combination with the lowest MAE is further compared 
with existing methods. In our implementation, the 68 landmarks 
are used for AAM training, and 127 features are extracted to 
maintain 98% shape and appearance variation. Besides, the tunable 
parameters of C-lsRCA, lsLPP, and KNN-SVR are selected 
through cross validation. The optimal dimensionality p of lsLPP 
and the parameter k of KNN-SVR are reached around 10 and 15 
(increasing or reducing them will degrade the overall performance). 

Tables 6 and 7 list the MAE results of the two experiments, 
and Fig. 3 depicts the comparison of CS with existing algorithms. 
From these results, we show that the proposed algorithms and 
modifications (C-lsRCA, lsLPP, and KNN-SVR) not only improve 
the performance of the proposed framework, but also achieve the 
lowest MAE and outperform the state-of-art algorithms. In 
addition, the proposed framework can be efficiently trained and 
tested. It takes only 6 seconds for training the C-lsRCA and lsLPP 
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Fig. 3 Cumulative scores of the proposed and existing algorithms 

 
Table 6: The comparison of different algorithm combinations 
in the proposed framework (STDN means STD normalization) 

 No change STDN RCA C-lsRCA
SVR LPP 7.35 5.79 5.43 5.55 

lsLPP 7.28 5.85 5.44 5.34 
KNN-
SVR 

LPP 4.84 5.10 4.67 4.74 
lsLPP 4.81 4.85 4.49 4.38 

 
Table 7: Comparing the MAE of the proposed algorithm with 
those of the existing algorithms 

Algorithm MAE Algorithm MAE 
AGES [4] 6.77 RPK [11] 4.95 
RUN1 [10] 5.78 MTWGP [13] 4.83 
RUN2 [10] 5.33 BIF [6] 4.77 

RED-SVM [2] 5.24 OHR [2] 4.48 
LARR [5] 5.07 Proposed 4.38 

 
matrices using Matlab on a duo-core PC. Although KNN-SVR is 
an on-line algorithm, it requires only 0.002 second for searching 
neighbors in the low-dimensional space and training SVR with 
only the k nearest neighbors. To further ensure the effectiveness of 
lsLPP for learning the feature-label connection, we depict the first 
two lsLPP features of the whole database in Fig. 4. As shown, 
obvious feature-label dependences have been reached by lsLPP. 
 

8. CONCLUSION 
 

A new age estimation framework considering the intrinsic factors 
of human ages is proposed in this paper. After feature extraction, 
RCA is utilized to achieve a suitable metric for neighbor searching. 
Then based on this metric, LPP is trained to reduce the feature 
dimensionality and learn the connections between features and 
aging labels. To further consider the ordinal nature of human ages 
as well as the unbalanced learning problem in RCA and LPP, the 
“label-sensitive” concept and several unbalance treatments are 
proposed and results in new algorithms called C-lsRCA and lsLPP. 
In addition, an age-specific local regression algorithm called KNN-
SVR is proposed to capture the complicated human aging process. 
The simulation results performed on the widely-used FG-NET 
aging database show that the proposed algorithms and framework 
achieve the lowest MAE against the state-of-art algorithms. 

 
Fig. 4 The dimensionality reduction result after C-lsRCA + lsLPP. 
The distribution of the 1st and the 2nd features of all FG-NET 
images is shown for visualization purpose. 
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