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ABSTRACT

This paper presents an automatic speaker state recognition

approach which models the factor vectors in the latent fac-

tor analysis framework improving upon the Gaussian Mixture

Model (GMM) baseline performance. We investigate both in-

toxicated and affective speaker states. We consider the affec-

tive speech signal as the original normal average speech sig-

nal being corrupted by the affective channel effects. Rather

than reducing the channel variability to enhance the robust-

ness as in the speaker verification task, we directly model the

speaker state on the channel factors under the factor analysis

framework. In this work, the speaker state factor vectors are

extracted and modeled by the latent factor analysis approach

in the GMM modeling framework and support vector machine

classification method. Experimental results show that the pro-

posed speaker state factor vector modeling system achieved

5.34% and 1.49% unweighted accuracy improvement over

the GMM baseline on the intoxicated speech detection task

(Alcohol Language Corpus) and the emotion recognition task

(IEMOCAP database), respectively.

Index Terms— Speaker state recognition, Emotion

recognition, Latent factor analysis, Supervector modeling

1. INTRODUCTION

Automatic recognition of paralinguistic information (e.g.,

gender, age, emotional state), can guide human computer

interaction systems to automatically adapt to different user

needs. Identifying speaker state given a short speech utter-

ance is a challenging task and has gained significant attention

recently in the speaker emotion challenge[1], paralinguistic

challenge[2], and speaker states challenge[3].

It has been shown in [4, 5, 6] that speaker state informa-

tion can be modeled at various levels, such as phonetic, acous-

tic, and prosodic. Due to the different aspects of modeling,

combining different classification methods can significantly

improve the overall performance [4, 5]. Acoustic level mod-

eling approaches, such as Hidden Markov Models (HMM)

or Gaussian Mixture Models (GMM) operating on the mel-

frequency cepstral coefficient (MFCC) features, play the most

fundamental and important role among those various subsys-

tems [5, 7] given short utterances. In this paper, we follow

the GMM-MFCC framework and focus on further enhancing

the performance of the intoxicated and affective speaker state

recognition tasks.

Recently, latent factor analysis (LFA) [8, 9] has been suc-

cessfully and widely used for the speaker verification task, in

which session variability caused by different channels influ-

ences the system performance dramatically. However, sys-

tems that directly use LFA to remove the speaker variability

factors in the speaker state recognition task have been shown

to perform worse than a GMM baseline [7, 6]. This might

indicate that the speaker variability is larger than the speaker

state variability. To address this issue, we treat a paralinguis-

tic speech signal as the normal average speech signal being

corrupted by channel effects and consider the speaker states

as the “channels”. Thus we employ the Eigenchannel factors

as a new kind of speaker state supervector and adopt SVM to

model these factor vectors for the discriminative speaker state

classification task.

The GMM LFA approach can be considered as a type of

feature extraction frontend which summarizes the affective

speaker states information into the low dimensional Eigen-

channel factor vectors. Compared to the commonly used large

dimensional feature vectors computed using statistical func-

tionals [2], the proposed factor vector reduces the feature di-

mensionality dramatically; therefore, it is more efficient for

the adaptive or online model training applications.

2. METHODS

An overview of the proposed method is displayed in Figure 1.

2.1. GMM baseline

The Gaussian Mixture Model (GMM) is adopted to model

the MFCC features. In the proposed work, a universal

background model (UBM) in conjunction with a maxi-

mum a posteriori (MAP) model adaptation approach [10]

is used to model different speaker states in a supervised

manner. Let the UBM be a N -components GMM model λ̃:
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Fig. 1. The system overview

λ̃ = {pi, μ̃i,Σi}, i = 1, · · · , N , where pi and Σi are the

ith UBM mixture weight and diagonal covariance matrix, μ̃i

corresponds to the mean of the ith Gaussian component of the

UBM. For each target speech segment, a GMM was adapted

from the UBM by the MAP adaptation [10]. As shown in (1),

the GMMs were modeled with diagonal covariance matrices

and only the means were adapted.

μi = αiEi(x)+(1−αi)μ̃i, αi =

∑T
t=1 Pr(i|xt)

β +
∑T

t=1 Pr(i|xt)
(1)

where Pr(i|xt) denotes the occupancy probability of feature

frame xt(t = 1, · · · , T ) belongs to the ith gaussian compo-

nent and β is the constant relevance factor. Here the GMM

mean supervector M is defined as a concatenation of the

GMM mean vectors M = [μt
1, · · · ,μt

i, · · · ,μt
N ]t [9, 11].

Assume the feature vectors are D-dimensional, the GMM

mean vector M is a ND dimensional vector.

2.2. Eigenchannel matrix estimation

In the GMM LFA framework for speaker verification [9],

we can consider the paralinguistic speech as normal average

speech being corrupted by affective channel variability. Let

us denote Mk,c as the speaker and affective channel depen-

dent mean supervector. Then Mk,c can be decomposed into

speaker dependent mean supervector plus the channel vari-

ability Uy, where U is the low rank Eigenchannel matrix

learned from the Principle Component Analysis (PCA) on

the pooled within speaker covariance matrix.

Mk,c = Mk +Uy (2)

U is a factor loading matrix and the components of y are the

speaker state channel factors [9]. In order to train the Eigen-

channel matrix, we need to use data from multiple speakers.

Furthermore, for each speaker, there should be speech utter-

ances from multiple speaker states. First, for each speaker

k, k = 1, · · · ,K and all his utterances j = 1, · · · , Jk, UBM

is adapted to obtain a supervector Mkj . Second, the corre-

sponding speaker true supervector is estimated by averaging

all the supervectors from this speaker:

M̃k =

Jk∑
j=1

Mkj

Jk
,Ḿkj = Mkj − M̃k. (3)

Then we concatenate all the speakers’ state variability super-

vectors Ḿkj into a variability supervector matrix S with ND

rows and J columns (J =
∑K

k=1 Jk):

S = [Ḿ11, · · · ,Ḿ1J1 , · · · ,ḾK1, · · · ,ḾKJK ] (4)

Finally, the Eigenchannel matrix U are given by R PCA

eigenvectors of the within speaker covariance matrix (1/J)SSt

wihch corresponds to the R largest eigenvalues [9].

2.3. Eigenchannel factor extraction

Based on the latent factor analysis framework, the speaker

states factor vector y is estimated as follows [8, 9]:

y = (A+E−1)−1
N∑
i=1

U
′
i

T∑
t=1

γi(t)
xt − μi

Σi
(5)

A =
N∑
i=1

U
′
iUi

Σi

T∑
t=1

γi(t) (6)

Ui, γi(t) and xt denote the sub matrix of U corresponding

to the ith gaussian component (D ×R), occupancy probabil-

ity of the tth feature on the ith gaussian component and the

tth feature vector, respectively. U
′
i is the transpose of matrix

Ui. The diagonal covariance matrix E includes the R leading

eigenvalues of the Eigenchannel matrix U . The details about

the Eigenchannel factor extraction are provided in [8, 9].

For each utterance, the acoustic MFCC features are

mapped into the Eigenchannel factor vector y. Then, a back

end SVM classifier was trained using LIBSVM [12] to model

the multi-class speaker states categories.

3. EXPERIMENTAL RESULTS

The proposed Eigenchannel factor vector modeling approach

is evaluated on two speaker state recognition tasks, namely,

intoxicated speech detection, in Section 3.1 and speaker emo-

tion classification, in Section 3.2.

3.1. Intoxicated speech detection

The Alcohol Language Corpus (ALC) database [3] compris-

ing 154 German speakers released in the 2011 speaker state

challenge [3] was used to study the intoxicated speaker state

recognition task. The two speaker states of interest are intox-

icated (indicated by a blood-alcohol content above 0.5mg/L)

and sober. First, in the GMM baseline system, a 512 com-

ponent GMM was trained for each state on the 39 dimen-

sional MFCC features in the training dataset. Second, in the
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LFA framework, MAP adaptation from UBM model was per-

formed for every utterance in both training and development

dataset. The GMM mean supervectors were generated by

concatenating the mean vectors of all components from the

adapted GMM. Then, the Eigenchannel matrix was trained

using the mean supervectors from the train set, and Eigen-

channel factor vector extraction was performed to map each

mean supervector into the factor vector. Speaker normaliza-

tion [13] was adopted on top of these factor vectors. The

GMM size N and Eigenchannel matrix rank R are 256 and

4, respectively. Finally, LIBSVM toolkit [12] was adopted to

perform this binary classification task on the 4-dimensional

Eigenchannel factor vectors, y.

The classification accuracy on the development set are

shown in Table 1. We can see that the proposed LFA Eigen-

channel factor modeling approach outperformed the GMM

baseline and achieved 3.94% and 5.34% improvement for

weighted and unweighted accuracy, respectively.

3.2. Speaker emotion classification

In the speaker emotion study, we use the Interactive Emo-

tional Dyadic Motion Capture (IEMOCAP) database [14].

This database contains approximately 12 hours of audio-

visual data from five mixed-gender pairs of actors[14].

IEMOCAP contains detailed face and head information

obtained from motion capture as well as video, audio and

transcripts of each session. Two act types were used; scripted

and improvisation of hypothetical scenarios. The goal was to

elicit emotional displays that resemble natural emotional ex-

pression. Dyadic sessions of approximately 5 minute length

were recorded and were later manually segmented into utter-

ances. Each utterance was annotated by at least 3 annotators

into categorical labels (anger, happiness, neutrality, etc).

We examine all 10 available speakers and use only speech

modality signals. We examine classes of anger, happiness,

excitation, neutrality, and sadness where there was majority

consensus across the three annotators. We have merged the

classes of happiness and excitation into a single class which

we will refer to as happiness.

We organize our emotion recognition experiments using

10-fold leave-one-speaker-out cross validation. The mean and

standard deviation of the number of test utterances across the

folds is: 62 ± 28, angry; 87 ± 26, happy; 58 ± 23, neutral;

and 65 ± 25, sad. The 30 dimensional feature set is com-

posed of 13 MFCC features, energy, pitch and their first or-

der derivatives. The GMM size is 512 and the Eigenchannel

matrix rank is 26. In Table 2, the speaker-independent emo-

tion classification results averaged over the 10 folds are pre-

sented. We can observe that only moderate improvements are

achieved (1.77% WA and 1.49% UA). This might be because

the emotional states are not stable and vary dynamically both

within and across utterances. It is shown in [15] that the fac-

tor analysis based speaker factor vectors can be used for the

Table 1. Unweighted accuracy (UA) and weighted accuracy

(WA) [3] on the development set of ALC database in the 2011

speaker state challenge.

WA UA

GMM baseline 65.33% 65.05%

LFA Eigenchannel Factor Modeling 69.27% 70.39%

Table 2. Unweighted accuracy (UA) and weighted accuracy

(WA) per utterance for 10-fold leave-one speaker out cross

validations on the IEMOCAP database.
WA UA

GMM baseline 54.11% 54.35%

LFA Eigenchannel Factor Modeling 55.88% 55.84%
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Fig. 2. Accuracy against Eigenchannel matrix rank

speaker change point detection task and achieved promising

results. Therefore, our further work will focus on analyzing

and tracking the proposed speaker states factor vectors along

the entire speech conversation or dialog using the sliding win-

dow framework which may have great potential in the speaker

states change point detection and tracking tasks.

The SVM classification results against the Eigenchan-

nel matrix rank R are shown for both tasks in Fig.2. We

can see that the results are not sensitive to the Eigenchannel

matrix rank and that even small rank (R < 5) can achieve

competitive results. This property validates that the proposed

Eigenchannel factor vector is highly informative and effective

in terms of the speaker state feature. Furthermore, the ma-

trix rank in the intoxicated speaker state recognition task is

smaller than in the speaker emotion classification task which

might be due to smaller speaker state categories.

In figure 3 we plot the first two dimensions of the eigen-
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Fig. 3. First 2 dimension of Eigenchannel factor vector of

fold 0 IEMOCAP training data

channel factor vector of the training data instances from the

first fold (the plots are similar across folds). We observe that

different emotions tend to occupy different, although overlap-

ping, positions of the two-dimensional space, suggesting the

discriminative ability of these two dimensions. Moreover the

first dimension seems to carry activation-related information.

Activation is an emotional attribute describing how active vs

passive is an emotional state. Typical examples of highly

activated emotions include anger, happiness and excitement,

while neutrality and sadness are usually described by medium

and low activation respectively [16]. Similar structure can be

observed across the first dimension where angry and happy

utterances tend to have high values while neutral and sad ut-

terances have medium and low values respectively. This sug-

gests that some of the computed Eigenchannel factors may

carry some interpretable (here emotion-related) information.

Future work includes analyzing and tracking the proposed

speaker state factor vectors along the entire speech conver-

sation or dialog using a sliding window framework. More-

over, factor analysis based i-vectors [17] and lasso based s-

vectors [18] in combination with various variability compen-

sating methods, such as Within Class Covariance Normal-

ization (WCCN), Probabilistic Linear Discriminant Analysis

PLDA), may also be employed to model the speaker states.

4. CONCLUSIONS

In this work, a latent factor analysis based Eigenchannel fac-

tor vector modeling approach was proposed to recognize var-

ious speaker states. We consider the affective speech signal

as the original average speech signal being corrupted by the

paralinguistic channel effects. Rather than reducing the par-

alinguistic channel variability to enhance the robustness as in

the speaker verification task, we directly model the speaker

state on the paralinguistic Eigenchannel factors under the fac-

tor analysis framework. Experimental results show that the

proposed method outperformed the GMM baseline on both

the intoxicated speech detection and speaker emotion recog-

nition tasks.
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