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ABSTRACT
This paper proposes a novel acoustic model transformation
method for speech recognition based on random projections.
Random projections have been suggested as a means of di-
mensionality reduction, where the original data are projected
onto a subspace using a random matrix. Moreover, as we are
able to produce various random matrices, it may be possible to
find a transform matrix that is superior to conventional trans-
formation matrices among random matrices. In our previous
work, a random-projection-based feature combination tech-
nique has been proposed but had a high computational cost.
In order to deal with this cost, in this paper, we introduce ran-
dom projections on the acoustic model domain, where linear
transformations are applied to an acoustic model using ran-
dom matrices. Its effectiveness is confirmed by word recog-
nition experiments on noisy speech.

Index Terms— acoustic model transformation, random
projection, random matrix, model domain

1. INTRODUCTION

Random projections have been suggested as a means of di-
mensionality reduction, where a random projection matrix is
used to project data into low-dimensional spaces. In con-
trast to conventional techniques, such as Principal Component
Analysis (PCA), which find a subspace by optimizing certain
criteria, random projections do not use such criteria; there-
fore, they are data independent. Moreover, they represent a
computationally simple and efficient method that preserves
the structure of the data without introducing significant distor-
tion [1]. Goel et al. [1] have reported that random projections
have been applied to various types of problems, including in-
formation retrieval (e.g. [2]), machine learning (e.g. [3, 4]),
and so on. Although based on a simple idea, random pro-
jections have demonstrated good performance in a number of
applications, yielding results comparable to conventional di-
mensionality reduction techniques, such as PCA.

In our previous work [5], we investigated the feasibility
of random projections for speech feature extraction, where
a speech feature is projected using various random matrices,
and the parameters of the acoustic model corresponding to

each random matrix are estimated from the projected features.
Experimental results showed that the random-projection-
based feature combination (on the feature domain) provides
better performance but with a high computation cost because
of the acoustic model training process for each projected
feature set.

In this paper, we introduce an approach in which random
projections are carried out on the acoustic model domain in-
stead of the feature domain, where linear transformations are
applied to an original acoustic model using random projection
matrices. The random projections on the model domain does
not require training of the parameters of the acoustic model.
It only requires a model transformation process using random
matrices. The computational complexity of the model trans-
formation is very low, unlike the random projections on the
feature domain which are computationally expensive as men-
tioned above.

This rest of this paper is organized as follows. In section
2, random projections on the feature domain are described,
and random projections on the acoustic model domain is in-
troduced in section 3. Section 4 describes the results of ex-
periments on a noisy speech recognition task.

2. RANDOM PROJECTIONS ON THE FEATURE
DOMAIN

This section describes a feature projection (extraction) method
using random orthogonal matrices [5]. The main idea of
random projections arises from the Johnson-Lindenstrauss
lemma; namely, if original data are projected onto a ran-
domly selected subspace using a random matrix, then the
distances between the data are approximately preserved [6].

Random projections are a simple yet powerful technique,
and it has another benefit. Dasgupta [3] has reported that
even if the distributions of the original data are highly skewed
(have ellipsoidal contours of high eccentricity), their trans-
formed counterparts will be more spherical.

First, we choose an n-dimensional random vector, p, and
let P(l) be the l-th n × d matrix whose columns are vectors,
p
(l)
1 , p(l)

2 , . . . , p(l)
d . Then, an original n-dimensional vector,

x, is projected onto a d-dimensional subspace using the l-
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Fig. 1. An example of a random matrix

th random matrix, P(l), where we compute a d-dimensional
vector, x(l), whose coordinates are the inner products x

(l)
1 =

p
(l)
1 · x, . . . , x(l)

d = p
(l)
d · x.

x(l) = P(l)T x (1)

It has been shown that if the random matrix P is chosen
from the standard normal distribution, with mean 0 and vari-
ance 1, referred to as N(0, 1), then the projection preserves
the structure of the data [6]. In this paper, we use N(0, 1)
for the distribution of the coordinates. The random matrix,
P, can be calculated extremely simply using the following
algorithm [1, 3].

• Choose each entry of the matrix from an independent
and identically distributed (i.i.d.) N(0, 1) value.

• Create the orthogonal matrix using the Gram-Schmidt
algorithm, and then the columns are normalized to unit
length.

The orthogonality may be effective for feature extraction be-
cause the hidden Markov models (HMMs) used in our exper-
iments utilize diagonal covariance matrices.

Fig. 1 shows an example of the random matrix from
N(0, 1). As shown in Fig. 1, a random matrix is composed of
various random vectors. As we can make many (infinite) ran-
dom matrices from N(0, 1), we will have to select the optimal

Feature domain Model domain 

Original
feature space 

random
projection

(training)

X

 

 

 

 

 

 

Fig. 2. Random projection on the feature domain. Acoustic
models are trained for every different feature space.

matrix or the optimal recognition result from among them.
To obtain the optimal result, a vote-based random-projection
combination was introduced in [5], where ROVER combina-
tion [7] was applied to random-projection-based features.

In the vote-based random-projection combination, first,
random matrices, P(l) (l = 1, ..., L), are produced as described
above. Speech features are then projected using each random
matrix. An acoustic model corresponding to each random ma-
trix is also trained, as shown in Fig. 2. For the test utterance,
using each acoustic model, a speech recognition system out-
puts the best scoring word by itself. To obtain a single hypoth-
esis from among the different systems, voting is performed by
counting the number of occurrences of the best word for each
random-projection-based system.

Experimental results showed that the random-projection-
based feature combination (on the feature domain) provided
better performance [5] but with a high computational training
cost because of the acoustic model training process needed
for each projected feature, as shown in Fig. 2. In order to deal
with computational cost, in the following section, we intro-
duce random projections on the acoustic model domain (in-
stead of the feature domain), where a linear transformation is
applied to an acoustic model itself using random matrices.

3. RANDOM PROJECTIONS ON THE MODEL

Fig. 3 outlines the process of random projections on the
acoustic model domain. An acoustic model for the original
feature space is transformed using various random matrices.
Therefore, it does not require the re-estimation process of the
acoustic model in order to obtain a new acoustic model for a
feature space projected using a random matrix.

In our work, an HMM is used as an acoustic model.
HMMs are widely-used for speech recognition for many
reasons including their tractability and their having simple
maximum likelihood parameter estimation techniques. In
common with most other HMM-based systems, the output
probability density function is made up of a mixture of Gaus-
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Fig. 3. Random projection on the acoustic model domain. An
acoustic model is transformed using various random matrices.
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sian densities as follows:

b(x) =
∑

m

cmN(x;μm,Σm) (2)

where cm is the weight of the m-th component of a state, and
N(∗;μ,Σ) is a multivariate Gaussian with mean vector μ and
covariance matrix Σ.

The aim of our work is to transform the mean vectors and
covariance matrices from the original space to a new space
that is projected using a random matrix. For the m-th mix-
ture component, a new estimate of the mean and covariance
is found by

μ(l)
m = P(l)T μm (3)

Σ(l)
m = P(l)ΣmP(l)T (4)

where P(l) is the l-th random matrix, which is computed from
N(0, 1) using the same method as described in section 2. We
used the same number of dimensions for the projected space
as that of the original space in this paper. As can be seen, the
computational cost of the linear transformations in Eq. (3) and
(4) is very low, unlike the random-projection-based feature
combination.

For the test utterances, the same low computation cost is
required since it is only the features that need to be randomly
transformed. To obtain a single hypothesis from among all
the transformed models (Fig. 4) voting is again performed by
counting the number of occurrences of the best word for each
random-projection-based feature.
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Fig. 4. Vote-based combination for decoding

4. EXPERIMENTS

4.1. Experimental Conditions

The random projections for model transformation method
was evaluated on a noisy speech recognition task. Noisy
speech data were taken from the CENSREC-3 (Corpus and
Environments for Noisy Speech RECognition) database

Table 1. Random projection using model transformation.
(The recognition rate for the original feature is 76.14%.)

Number of RP combination RP w/o combination
random matrices based on ROVER Max. Mean Min.

20 78.11% 78.27% 78.03% 77.84%
40 78.16% 78.27% 78.02% 77.78%
60 78.18% 78.27% 78.03% 77.78%
80 78.20% 78.27% 78.02% 77.72%
100 78.21% 78.27% 78.03% 77.72%

Table 2. Comparison of recognition accuracy [%] between
the feature-based RP and the model-based RP

w/o RP Feature-RP Model-RP
76.14 78.81 78.21

[8]. All speech data were collected in car environments
(idling, low speed, and high speed). The “condition 4” of the
CENSREC-3 was used for training and testing in this paper.
The training data were composed of 3,608 phonetically-
balanced sentences, and the total number of speakers for the
training data was 293 (202 males and 91 females). The test
data were composed of 8,836 utterances, and the total num-
ber of speakers for the testing data was 18 speakers (8 males
and 10 females). The tests were carried out on a 50-word
recognition task.

Speech was sampled at 16 kHz and windowed with a
20-msec Hamming window every 10 msec. In the mel-filter
bank analysis, a cut-off was applied to frequency components
lower than 250 Hz, and the total number of dimensions of
the filter-bank output was 24. In this paper, cepstral mean
subtraction was applied to the MFCC-based feature vectors.

The acoustic models consist of triphone HMMs that have
five states with three distributions. Each distribution was rep-
resented with 32-mixture Gaussians. The baseline system was
trained using the 36-dimensional feature vectors consisting of
12-dimensional MFCC parameters, along with their delta and
delta-delta parameters (window lengths were ±3 and ±2, re-
spectively). The baseline recognition accuracy was 76.14%.
In the experiments, we used the same number of dimensions
for the projected space as that of the original space.

4.2. Experimental Results

We investigated the performance of random projections for
various random matrices (l = 20, 40, 60, 80, and 100) sampled
from N(0, 1). Table 1 shows the recognition rate versus the
number of random matrices. The results of “RP w/o combina-
tion” shows the maximums, means, and minimums obtained
from each random projection without ROVER-based combi-
nation. As shown in Table 1, experimental results indicate
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that the vote-based random-projection combination improves
the recognition rate from 76.14% to 78.11% using the combi-
nation of 20 random matrices, and even the minimum result
of RP (Random Projection) without combination for random
matrices was better than the recognition rate of the original
feature. Also, even if the number of random matrices is in-
creased, we do not show further performance increases in our
experiments. This characteristic is the same as that shown in
our previous work (random projection on the feature domain)
[5]. Table 2 shows a comparison of recognition accuracy be-
tween the feature-based RP and the model-based RP, where
100 random matrices are used. The experiment result indi-
cates that model-based random projection can improve the
recognition rate from the baseline to basically the same de-
gree as feature-based RP.

Table 3 shows a comparison of recognition accuracy for
PCA-based features. A 2-D Gabor feature (60 dimensions)
[9] is computed in the filter-bank output domain, the 36-
dimensional Gabor feature is obtained from Gabor + ΔGabor
+ ΔΔGabor using PCA. Also, the 32-dimensional multiple-
frame feature (e.g. [10]) is computed from 11 successive
frames of 12-dimensional MFCC using PCA. As shown in
this table, both random projection approaches can improve
the recognition rate from the baselines. As mentioned above,
one possible reason the random projection improves the
recognition rates may be that if distributions of original data
are skewed (have ellipsoidal contours of high eccentricity),
their transformed counterparts will become more spherical
[3]. It is also interesting to note that ROVER-based combina-
tion shows benefits even if combining results from essentially
the same system that has been repeatedly subjected to differ-
ent random projections.

Table 3. Comparison of recognition accuracy [%] for PCA-
based features

w/o RP Feature-RP Model-RP
Gabor 72.39 78.45 78.21

Multiple-frame 81.09 81.44 84.73

5. CONCLUSION

This paper has described a random projection method based
on acoustic model transformations. We might expect to find
a projection matrix that gives a better speech recognition ac-
curacy among random matrices since the space of likely in-
stances is extremely diverse, more so perhaps than that of
data-driven transformations. The method of random projec-
tions based on model transformation provides better perfor-
mance in comparison with the baseline, just as random pro-
jections on the feature domain does. Also, the computational
cost of the model based transformation is very low, while the

feature domain method is computationally costly due to the
need to retrain each system individually. For decoding, the
same low computation cost is required since only linear trans-
formations on the features are used. Further speedups could
be obtained in practice using fast matrix-matrix multiply rou-
tines making the proposed technique feasible for large-scale
speech recognition systems. In future research, we will con-
tinue to investigate how to select the optimal basis vectors via
the use of such random matrices.
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