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ABSTRACT
Mode-based clustering approaches such as mean-shift and its vari-
ants are extremely successful. They are also computationally ex-
pensive due to their iterative hill-climbing strategy when determin-
ing cluster labels for samples. We identify the fact that mode-based
cluster boundaries exhibit themselves as minor surfaces of the data
distribution. Based on this observation, we develop a mode-based
clustering methodology that does not involve iterative hill climbing
for each sample. The method, instead, is based on searching for the
presence of a minor surface on a path that connects pairs of samples.
The pairwise data connections, when evaluated efficiently, may lead
to a simple graph connectivity matrix based on which clusters can
be identified using connected components. This search efficiency is
achieved by an agglomerative clustering approach in the particular
proposition presented in this paper. Illustrative experiments are car-
ried out on synthetic datasets using Gaussian mixture models and
kernel density estimates.

Index Terms— Mode-based clustering, minor surface, cluster
boundary

1. INTRODUCTION

Clustering is a fundamental problem in data analysis. There is a
tremendous amount of work on clustering methods [1], many of
which include mode seeking techniques. In mode-based clustering,
each mode of the density model is considered as a cluster represen-
tative. Each sample is iterated towards its mode and the sample is
assigned to the cluster which is represented by its mode.

Mean-shift [2, 3] is a popular mode-seeking algorithm which is
non-parametric and iterative. In the literature many variations are
proposed such as medoid-shift [4] and quick shift [5]. The advan-
tages of using mode seeking algorithms are (i) the procedure is data
driven and it is not required to know the number of clusters (ii) no
need for a predefined step size for convergence to mode. However,
the time complexity of the algorithm is large since a hill-climbing
scheme is used for each sample. Many methods [6, 7] are proposed
to accelerate mode seeking algorithms, which mostly suggest ways
to decrease the number of iterations on hill climbing.

Eberly et al. [8] defined ridge and valley points in images by
inspecting the relation between local gradients and Hessians. The
definitions are generalized to principal and minor curves/surfaces of
probability density functions (pdfs) by Ozertem and Erdogmus [9],
and techniques to identify principal curves have been utilized in
many domains such as signal denoising [10] and clustering [11].
Basically, a point is on minor surface if the local gradient and one
or more eigenvectors of Hessian are orthogonal and corresponding
eigenvalues are positive.

In this work, we are interested in clustering large amounts of
data without iterating to the mode for each sample. The proposed

This work is supported by NSF.

approach exploits the fact that minor surfaces are the cluster bound-
aries for a mode-based clustering method. Instead of convergence
to mode, a connectivity analysis is performed on pairs by search-
ing for minor surfaces between them. Search for all pairs is avoided
following an agglomerative clustering scheme.

2. METHOD

In this section, we discuss the main idea by explaining the relation
between minor hyper-surfaces and cluster boundaries. The details of
the algorithm is presented based on this association.

2.1. Relation between Minor Surfaces and Cluster Boundaries

The proposed method is based on the fact that minor surfaces repre-
sent a natural boundary between clusters in a mode seeking cluster-
ing scheme. 1

Assume we are given a pdf estimate p(x) where x ∈ Rn. Let
g(x) and H(x) be the local gradient and Hessian at x. Let L(x)
be the Hessian of the logarithm of the pdf, denoted by Hlog p(x).
Using the second order Taylor series expansion of log p(x) we have

L(x) = −p−1(x)H(x) + p−2(x)g(x)gT (x) (1)

The Hessian of the logarithm of the pdf is preferred in order
for L(x) to become a quadratic when the pdf is Gaussian. This
monotonic-increasing function applied to the pdf can be arbitrarily
selected without a theoretical affect in the rest of this paper. Sup-
pose {(λ1(x),q1(x)), . . . , (λn(x),qn(x))} are the eigenvalue-
eigenvector pairs of L(x), where eigenvalues are sorted in ascend-
ing order: λ1 ≤ λ2 ≤ · · · ≤ λn. Let Mn−1 denotes the n − 1
dimensional minor surface. A point x ∈ Mn−1 iff g(x)Tqj(x) = 0
for some j ∈ 1, ..., n and λj(x) > 0. In other words, on the minor
surface the local gradient and the eigenvector corresponding to an
eigenvalue should be perpendicular and the associated eigenvalue
should be positive. We are particularly interested in the case where
j = n, i.e.the largest eigenvalue.

Mode seeking algorithms assign each sample to its mode by fol-
lowing gradient flow. Our method is based on the fact that no gra-
dient trajectory can pass through a minor surface. Assume a point
y′ ∈ Rn is in the vicinity of the point y ∈ Mn−1. If we think of
the eigenvectors of L(y) as a local coordinate frame, the local gra-
dient g(y′) should have two components: one parallel to the minor
surface, the other orthogonal. The orthogonal component is along
the eigenvector of L(y) that is perpendicular to g(y). The parallel
component is in the span of the other eigenvectors whose span also
contains g(y). The parallel component of g(y′) does not make the
gradient flow trajectory passing through this point approach or di-
verge from the minor surface Mn−1. However, the orthogonal com-
ponent always points away from the minor surface and causes the

1We will use the phrase minor surface instead of minor hyper-surface.
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gradient flow trajectory to diverge. Consequently, the gradient flow
trajectory passing through y′ will move the point away from the mi-
nor surface 2. As a broader consequence of this observation, we note
that gradient flow trajectories do not intersect (pass through) minor
surface. Therefore, minor surfaces represent the natural geometric
boundary for mode based clusters given a pdf model.

In this study, we use this fact to construct an agglomerative clus-
tering methodology. Instead of seeking the mode for each sample,
we search for minor surfaces between samples. If there exists a path
between two samples that does not pass through minor surface, then
these samples climb to the same mode. Thus, they belong to the
same cluster.

2.2. Minor Surface Search between Samples

Based on the definition of minor surfaces, the following measure will
help us to test whether a point x is on Mn−1 or not.

β(x) =
λng(x)

Tqn

‖L(x)g(x)‖‖g(x)‖ (2)

If x ∈ Mn−1, then β(x) will be 0 and λn > 0. For the points
around a minor surface, β will attain a positive value which is close
to zero. Similarly, for points on the principal curve β will be -1, and
for points close to principal curve, it will give negative values that
are close to -1. Thus we will use β(x) and the largest eigenvalue
λn(x) to test whether there exists a minor surface in between two
samples. Basically, we perform a line search with a small step size
γ and search for a point which has a β value that is smaller than a
predefined threshold thr 3 and a positive λn. Thresholding might
be problematic, since we can break off some necessary connections.
For example, even though there does not exist a point which gives a
β value of zero on a line, due to thresholding we can decide not to
connect the samples. As our primary aim in this paper is to demon-
strate the concept of using minor surfaces for clustering, we accept
some potential missing edges due to this algorithmic imperfection.
As a future extension, we will seek to develop improved strategies
for testing for the presence minor surface intersections.

If a sample point is detected as being in close proximity of a mi-
nor surface, then that point is not connected to any of the samples
in the dataset due to the test described above. Hence, we perform
a post-processing step for these samples that are close to minor sur-
faces based on the β-test. For each such point, mean-shift iterations
are performed until it gets connected to one of the current subgraphs.

In our graph representation, we add an edge between samples
when there is no minor surface on the line that is connecting them.
Two samples belong to same cluster if there is a piecewise linear
path that does not pass through any minor surfaces. Therefore final
clustering is based on connected component analysis. Two samples
are assigned to the same cluster if they belong to the same subgraph
on the graph representation. We follow an agglomerative clustering
scheme and start with a graph having N nodes with no edges where
N is the number of samples. Then we perform tests on pairs starting
from the closest ones. We avoid testing for unnecessary pairs based
on our cluster growing methodology. At the execution of the algo-
rithm, if we create an edge between two samples, then their clusters

2Detailed proof is omitted due to lack of space, but this proof sketch
clearly illustrates the concept. Proofs will be included in future journal pub-
lications.

3Ideally, we need to identify if a point that achieves 0 exactly exists in
this interval. Iterative root searching is possible but still there is no guarantee
that we will get exactly the point of interest if it exists. In this initial design,
we use a threshold value which is positive and close to 0.

Fig. 1. The results on a mixture of two Gaussians with equal weights
and identity covariances. The means of two mixtures are at (−2, 0)
and (2, 0).

are merged together. Similarly, we skip testing two samples that be-
long to same cluster. The details of the algorithm are presented in
Algorithm 1. Note that, we can also avoid testing for pairs that are
too far from each other by enforcing a tolerance value for pairwise
distance.

3. EXPERIMENTS AND RESULTS

We have simulated different datasets to run our experiments on. The
first set of experiments are performed on data generated from Gaus-
sian Mixture models (GMMs). Our goal is to better visualize the
results on a known density where we know the location of the mi-
nor curve - the cluster boundary in 2-dimensional examples. Fig-
ure 1 displays the results for a set of samples that are generated
from a mixture of two Gaussians with equal weights and identity
covariances. The generated samples are successfully clustered into
two groups. As seen in the figure, connectivity test outputs two
sparse subgraphs and there is no connection passing through the mi-
nor curve lying at x = 0. Figure 2 displays the result for a mix-
ture of three Gaussians with equal weights and identity covariances,
organized into an equilateral triangle. Here there are minor curve
segments between each pair of clusters designating the separation
boundary. The technique gives accurate results.

In the second set of experiments, Kernel Density Estimation
(KDE) using Gaussian kernels is exploited. We used leave one
out log-likelihood cross validation to find the optimal kernel width,
where isotropic fixed-bandwidth kernels are used. Some samples
that are close to a minor curve cannot be connected to any other
samples during their initial connectivity test. These samples are
connected successfully, after a few mean-shift iterations. Figure 3
displays two circular clusters, where no connectivity is assigned to
samples of pairs corresponding to different clusters. The number of
clusters is correctly found as two. Clustering on another set of sam-
ples is seen on figure 4. Notice that since we start connectivity test
on samples that are close to each other, we do not perform any test
on samples that are at the tips of the same crescent. Moreover, the
samples at the tips of the same cluster are not considered connected
due to the minor curve passing through the line connecting them.
Although they are not directly connected by an edge in the graph,
based on the agglomerative strategy, they are successfully put into
the same cluster through connecting paths on the graph.
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Algorithm 1 Clustering algorithm for given set of samples
x1,x2, . . .xN , a pdf, a step size γ for line search and a thresh-
old value thr for testing β. The outputs are the cluster labels
c1, c2, . . . cN and N × N edge matrice E for graph representation.
MinorSurfaceTest(xa,xb) function returns true when there is
no minor surface on the line connecting xa and xb. It returns false
otherwise.

1: {initialize cluster labels, start with N clusters}
2: ci ← i ∀i ∈ {1, 2, . . . N}
3: {Initialize edge matrice}
4: E(i, j)← 0 ∀i, j ∈ {1, 2, . . . N}
5: {Compute pairwise distance matrix D}
6: D(i, j)← ‖xi − xj‖ ∀i, j ∈ {1, 2, . . . , N}
7: {pairs sorted according to distances in ascending order}
8: {f1, f2, . . . fN2} = {{1, 2, . . . N} × {1, 2, . . . N} and D(fi) ≤

D(fj) iff i ≤ j}
9: {Keep a set S containing the points detected on the minor sur-

face}
10: S ← {}
11: for (a, b) = f1 → fN2 do
12: if a < b AND ca �= cb AND {a, b} /∈ S then
13: if MinorSurfaceTest(xa,xb) then
14: {Merge clusters and connect the nodes.}
15: ci ← cb ∀i : ci = ca
16: E(a, b)← 1
17: E(b, a)← 1
18: else
19: if 0 ≤ β(xa) ≤ thr AND λn(xa) > 0 then
20: S ← S ∪ {a}
21: end if
22: if 0 ≤ β(xb) ≤ thr AND λn(xb) > 0 then
23: S ← S ∪ {b}
24: end if
25: end if
26: end if
27: end for
28: {Post-processing on samples in S}
29: for k ∈ S do
30: x← xk

31: while �j ∈ {1, 2 . . . , N} : MinorSurfaceTest(x,xj) do
32: {iterate with the mean-shift update msupdate(x)}
33: x← x+msupdate(x)
34: end while
35: ck ← cj |MinorSurfaceTest(x,xj)
36: end for

1: procedure: MinorSurfaceTest(xa,xb)

2: e← γ(xb−xa)
‖xb−xa‖

3: x← xa + e
4: while ‖x− xb‖ ≥ γ do
5: if 0 ≤ β(x) ≤ thr AND λn(x) > 0 then
6: return false
7: end if
8: x← x+ e
9: end while

10: return true

Fig. 2. The results on a mixture of three Gaussians with equal
weights and identity covariances. The means of the mixtures con-
struct an equilateral triangle with an edge length of 4. Resulting
three clusters are illustrated with circle, square and triangle nodes.

Fig. 3. The results on circles data. Dashed lines indicate the connec-
tions that are made after some mean-shift iterations. Two clusters
are displayed with red circles and green squares.
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Fig. 4. The results on the crescents dataset. There are two connected
components illustrated with red circles and green squares. Dashed
lines are the connections made after some mean-shift iterations.

4. CONCLUSION AND DISCUSSION

In this study, we proposed a mode-based clustering algorithm which
does not involve mode seeking. The proposed technique is based
on minor surfaces forming the boundary between clusters. Instead
of following a hill climbing strategy for each sample, we search for
minor surface between samples. We propose a metric which dis-
criminates minor surface points from the others. The pairs which do
not contain any minor curve on the line connecting them are consid-
ered to be in the same cluster. Following an agglomerative cluster-
ing scheme, clusters are merged when a minor surface test between
them fails. The experiments are carried out on datasets where low-
dimensional GMM and KDE models are used for illustrative pur-
poses. The results show that the method is successful on clustering
samples based on minor surface test. In the future, we would like to
extend our work by using an improved search strategy for the minor
surface intersection test. Further improvements to handle large num-
ber of samples and high dimensional data will also be considered.
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