
A HETEROSCEDASTIC EXTENSION OF LDA
BASED ON MULTI-CLASS MATUSITA AFFINITY

Mohammad Shahin Mahanta, Konstantinos N. Plataniotis

The Edward S. Rogers Sr. Department of Electrical and Computer Engineering
University of Toronto

Email: {mahanta, kostas} @comm.utoronto.ca

ABSTRACT
Linear discriminant analysis (LDA), a conventional feature extrac-
tion technique, is a homoscedastic solution and ignores the second
order information of the data. A heteroscedastic extension of LDA
has been previously proposed which relies on the average pairwise
Chernoff distances of the classes. However, in a multi-class scenario
with number of classes C > 2, the average of pairwise distances is
not directly related to the classification error rate. Furthermore, the
corresponding method imposes a high computational complexity of
order O(C(C − 1)). This paper proposes an inherently multi-class
heteroscedastic extension of LDA based on Matusita’s separability
measure, a multi-class generalization of the Chernoff distance which
is related to multi-class error bounds. The proposed feature extrac-
tor can be trained non-iteratively with computational complexity of
O(C). Experimental comparisons with the Chernoff method demon-
strate both a performance improvement when estimated parameters
are used, and a reduction of factor C − 1 in the computational load
as predicted.

Index Terms— Heteroscedastic feature extraction, Chernoff
distance, Matusita affinity, Gaussian quadratic classifier, multi-class
separability measure.

1. INTRODUCTION

Linear feature extraction techniques such as linear discriminant anal-
ysis (LDA) are widely used to simplify the classification of high-
dimensional data and simultaneously reduce the computational com-
plexity [1]. These techniques are essential in applications such as
automated medical diagnosis, data mining, bioinformatics, personal
identification from biometrics, and speech recognition [2] where the
high dimensionality of the data poses a major challenge to the clas-
sification problem. A popular feature extraction method, LDA, as-
sumes that the data are homoscedastic, i.e. the covariances of the dif-
ferent classes are the same [3]. Thus, in a heteroscedastic scenario
with different class covariances, LDA ignores and hence eliminates
the significant information in the covariances of the data. Removal
of covariance information also restricts the number of LDA features
to the dimensionality of the subspace spanned by the class means.

Several feature extraction methods have been proposed for het-
eroscedastic data. Iterative procedures have been proposed to max-
imize criteria such as the data likelihood [4] or average pairwise
Chernoff distances of the classes [5, 6]. But these approaches de-
part from the efficient training algorithm of LDA. Thus, simple non-
iterative procedures have also been proposed based on criteria such
as the mutual information between the features and the classes [7],
the geometrical mean of pairwise Mahalanobis distances between
the classes [8], or approximation of a linear sufficient statistic [9, 10].

One of the commonly used non-iterative heteroscedastic tech-
niques, the Chernoff method, is based on a modified version of LDA
[11]: The LDA criterion is expressed as an average of pairwise Eu-
clidean distances. These pairwise distances are replaced with pair-
wise Chernoff distances in the Chernoff criterion. However, unlike
the Chernoff distance, the average of pairwise Chernoff distances
is not directly related to a bound on the classification error which
could provide a theoretical ground for the criterion. In fact, maxi-
mizing the average pairwise distance may result in separation of the
already separated classes, and possibly overlap of the originally ad-
jacent classes [12].

These drawbacks of the Chernoff method can be obviated by
minimizing a multi-class bound on the probability of error. Such
a bound can be derived using the union bound or the equivocation
[12]. However, this approach leads to much higher computational
complexity due to the required iterative optimization.

In our proposed non-iterative feature extractor, we use Ma-
tusita’s multi-class separability measure instead of the average
Chernoff distance. Matusita’s separability measure is a multi-class
generalization of the Chernoff distance [13], and can be used to find
an upper bound on the multi-class probability of error [14]. Based
on this measure, we will propose a non-iterative procedure for lin-
ear feature extraction which is related to the corresponding error
bounds. Moreover, the pairwise formulation of the Chernoff method
imposes computations of order O(C(C − 1)) for C classes, which
is reduced to O(C) for our proposed method. This reduction of
computational complexity by a factor of C − 1 is accurately verified
using experiments on synthetic and real-world data.

2. REVIEW OF CHERNOFF FEATURE EXTRACTOR

In this section, first the typical linear feature extraction problem is
formulated. Then, LDA and the need for heteroscedastic solutions
such as the Chernoff method are reviewed.

Consider classification of the data1 x∈R
n into one of the classes

ωi, 1 ≤ i ≤ C. The non-zero prior probability for ωi is shown as pi,
and can be estimated as the fraction of the training samples belong-
ing to ωi, i.e. Ni

N
. Also, the sample mean and covariance of class ωi

are denoted respectively as mi and Si. The average mean is shown
as m, and the average sample covariance, also called within-class
scatter, can be written as SW . The following formulation assumes
SW = In×n, which can be guaranteed in the general case through
initial normalization of the data by the factor S−1/2

W [11].

1In this paper, scalars, vectors, and matrices are respectively shown in
regular lowercase/uppercase (e.g. a or A), boldface lowercase (e.g. a), and
boldface uppercase (e.g. A). Also, the matrix logarithm for positive definite
(p.d.) matrix Sn×n, as defined in [15], is denoted as log(S).
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Linear features of the data are generally calculated as

yd×1 = Td×nxn×1. (1)

In the LDA method, the operator T is selected so that the criterion
tr{(TTT )−1TSBT

T } is maximized, with the between class scat-
ter SB =

∑C
i=1

pi(mi − m)(mi − m)T [1, 11]. However, the
formulation of SB ignores possible differences in the class covari-
ances, and also restricts the number of LDA features to C − 1.

To incorporate the covariance information into LDA, in [11],
the LDA criterion is expressed based on an average of pairwise Eu-
clidean distances between the class means. Then, each pairwise dis-
tance is replaced by the Chernoff distance between the class pair.
The resulting average of pairwise Chernoff distances incorporates
the differences between class means as well as covariances. The
Chernoff feature extractor based on this criterion retains the desir-
able non-iterative nature of LDA. In this method, T is obtained by
selecting its rows as the d eigenvectors corresponding to the largest
eigenvalues of

SC =

C−1∑
i=1

C∑
j=i+1

pipj
{
S
−

1

2

ij (mi −mj)(mi −mj)
T
S
−

1

2

ij

+
1

πiπj
(log(Sij)− πi log(Si)−πj log(Sj))

}
, (2)

where πi =
pi

pi+pj
, πj =

pj
pi+pj

, and Sij = πiSi + πjSj [11].

The Chernoff distance between two classes, which is the basis
for the Chernoff criterion, is related to upper bounds on the prob-
ability of binary classification error [16]. However, the multi-class
measure obtained by the average of pairwise Chernoff distances is
not similarly related to the probability of multi-class classification
error. In fact, the average of pairwise distances can be dominated by
the distance of class pairs which are already far apart in the original
space, while the contribution of adjacent classes is non-significant
[12]. Furthermore, the pairwise formulation of the Chernoff method
leads to a computational overhead in the training phase. To alleviate
these problems, we propose a heteroscedastic feature extractor based
on an inherently multi-class distance measure. Both theoretical and
experimental results indicate that this approach leads to a signifi-
cant improvement in the computational complexity of the Chernoff
method.

3. PROPOSED MATUSITA FEATURE EXTRACTOR

This section introduces a heteroscedastic extension of LDA which is
a non-iterative procedure as the Chernoff method. Yet, it is related to
the maximization of the multi-class Matusita separability measure,
and hence minimization of the corresponding error bounds.

As a common assumption in many applications [10] which also
underlies the Chernoff criterion, we assume that the data in class ωi

are distributed as N (mi,Si), for 1 ≤ i ≤ C. We also assume that
SW = I. The weighted Matusita affinity is a measure of similarity
or overlap of distributions, and can be calculated for our assumed
Gaussian distributions as [13]

ρw =

∏C
i=1

|Si|
−

pi
2

|Q|
1

2

× exp
{1

2
q
T
Q

−1
q

−
C∑

i=1

pi
2
(mi −m)TS−1

i (mi −m)
}
, (3)

where Q =
∑C

i=1
piS

−1

i , and q =
∑C

i=1
piS

−1

i (mi −m).
Minimization of ρw is equivalent to maximization of the separa-

bility measure −2 log ρw = tr(SM ), where

SM =
C∑

i=1

pi logSi + logQ−Q
−

1

2 qq
T
Q

−
1

2

+
C∑

i=1

piS
−

1

2

i (mi −m)(mT
i −m)S

−
1

2

i . (4)

Therefore, following a non-iterative procedure similar to LDA, we
will define the Matusita criterion as maximization of the projected
separability measure tr{(TTT )−1TSMTT }. Linear feature ex-
tractor Td×n maximizes this criterion if and only if its rows are the
d eigenvectors of SM with the largest corresponding eigenvalues.
Such an operator is the proposed Matusita feature extractor.

It is noteworthy that for data with arbitrary SW , we first need
to normalize the data and parameters by S

−1/2
W to achieve SW = I,

and then find the linear operator from eigendecomposition of SM .
The Matusita feature extractor will be TS

−1/2
W in this general case.

Comparison of (2) and (4) reveals that the Chernoff method re-
quires computations of the order O(C(C − 1)), whereas the com-
plexity of the Matusita method is O(C). This efficiency is achieved
through the inherently multi-class formulation of Matusita’s measure
which avoids the more demanding pairwise formulation.

In the following, we will compare the performance of the pro-
posed Matusita method with that of LDA and its Chernoff-based
heteroscedastic extension. All these methods rely on non-iterative
procedures on the first two moments of the data.

4. EXPERIMENT ON SYNTHETIC DATA

In this experiment, the data are generated exactly according to the
assumed Gaussian distributions N (mi,Si). Furthermore, the exact
parameters mi and Si are used for the design of the feature extrac-
tors and the classifier. As a result, this experiment excludes the effect
of both the deviation of the data from the implied model, and any pa-
rameter estimation error.

In each of 100 iterations, C = 6 Gaussian-distributed classes
are selected. Each class mean mi is selected as a uniformly dis-
tributed random vector in the unit cube centered at the origin in R

50.
Each covariance Si is selected as σ(AAT+ΓiΓ

T
i ). The scaling fac-

tor σ = 100 affects the total variance. The element A, common to
covariances of all classes, is a 50 × 50 random matrix with all its
entries selected uniformly from the interval [−0.5, 0.5]. The class-
specific constituent Γi is a 50 × 50 random matrix with the entries
of the 20×20 block on the top-left corner selected like the entries of
A, and other entries as zero. The resulting covariance matrices differ
only in 20 dimensions. We will use this fact to examine minimal suf-
ficiency of the different methods as described in [10]. In each of 100
iterations, a specific realization of these random class parameters are
selected and used to generate 100 testing samples per class.

For each feature extractor and in each iteration, the linear oper-
ator is calculated by plugging in the exact mi and Si values. The
resulting operator is applied on each of the corresponding testing
samples, and the most prominent extracted features are used by a
quadratic classifier based on mi and Si to determine the correspond-
ing class. The classification error rate for each feature extractor over
all the testing samples is calculated, and is averaged over all the 100
iterations.

The average error rate for each algorithm is plotted in Fig. 1 ver-
sus the number of extracted features used by the classifier. Also, the
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Fig. 1: Average error rate of the quadratic classifier with different
feature extractors using actual mi and Si parameters for six het-
eroscedastic Gaussian distributions. This experiment does not in-
clude the effect of parameter estimation errors.

Method LDA Matusita Chernoff
t (ms) 5.1 343.4 1665.1

Table 1: Average CPU time in milliseconds (t) required to calculate
the feature extractors based on synthetic parameters.

required CPU processing time, calculated for the deployed worksta-
tion with 3GHz quad core Intel processor and 4GB RAM, is reported
in Table 1.

From Fig. 1, it is evident that the heteroscedastic methods have
been able to exploit the second order discriminant information of the
data to improve LDA’s performance. Although the performance of
the Chernoff and Matusita methods are quite close to each other in
this case, Matusita outperforms the Chernoff method in the presence
of estimation errors as shown in the next section.

Furthermore, the complexity of the Matusita method is lower
than that of the Chernoff method by an order of C − 1. The simu-
lation times in Table 1 verify this relationship. Specifically, the ratio
of the run time for Chernoff versus Matusita is 4.85 which approx-
imately equals C − 1 = 5. Thus, the proposed Matusita method is
asymptotically C − 1 times faster than the Chernoff method. Such
a difference will be critical especially for applications with a large
number of classes.

Fig. 1 also demonstrates that both the Chernoff and Matusita
provide at most 25 features in this case, and hence avoid any redun-
dant features beyond 25 which is the minimum number of sufficient
features [10]. Furthermore, both methods have provided the mini-
mal average error rate at this dimension. Therefore, both methods
seem to provide a minimum-dimensional linear sufficient statistic.
This property of the Chernoff and Matusita methods in practice is
the target of future investigation.

5. EXPERIMENTS ON UCI DATA SETS

In this section, real world data are classified into a predetermined set
of classes. Therefore, neither the accuracy of the parameters, nor the
Gaussianity of the data is guaranteed. Thus, the results incorporate

Data set name C N n dPCA JH

(a) Wisconsin breast cancer 2 683 9 9 318.10
(b) BUPA liver disorder 2 345 6 6 7.63
(c) Ionosphere 2 351 34 33 37.71
(d) Iris plants 3 150 4 4 14.06
(e) Thyroid gland 3 215 5 5 93.69
(f) Glass identification 6 214 9 8 43.17
(g) Image segmentation 7 2310 19 14 1,266.04

Table 2: Specifications of the UCI data sets: total number of classes
(C), total number of samples (N ), original data dimensionality
(n), data dimensionality after PCA (dPCA), and multivariate het-
eroscedasticity measure (JH ).

Fig. 2: Experimental setup for UCI experiments.

the tolerance of different feature extractors to parameter estimation
error and deviation of the data from Gaussianity.

The data sets are selected from a subset of University of Cali-
fornia, Irvine (UCI) machine learning repository [17] designed for
the classification purposes. The specifications of the data sets are
outlined in Table 2. This table also includes our calculated het-
eroscedasticity score based on [18] for each data set. This multi-
variate test is designed to provide a reliable score even in a small
sample size scenario. With a 0.05 significant level, any JH score
higher than 1.64 indicates heteroscedasticity. It can be seen that all
the data sets are detected as heteroscedastic.

There are two differences in the experimental setup compared to
Section 4. First, the data mean and covariance for each class need
to be estimated using a set of training samples. We have used a ran-
dom 90% subset of the data set for training and the remaining 10%
for testing. This random partition is repeated 100 times to alleviate
any possible bias in the results. The second difference in the setup
arises from the small sample size in some of the data sets, which may
lead to singularity in the estimated covariances. Both the Chernoff
and Matusita methods, as well as the quadratic classifier, assume a
non-singular covariance estimate. Thus, to ensure covariance non-
singularity, we precede each feature extractor with a principal com-
ponent analysis (PCA) step and a regularization step as depicted in
Fig. 2. Using PCA, the data are projected into d PCA-dimensional
space (ref. Table 2), where d PCA is the highest dimension to ensure
that the average class covariance is non-singular. Then, each of the
class covariances is slightly regularized with a small regularization
parameter of 0.001 toward the average class covariance [19].

Each feature extractor, along with the quadratic classifier, is
trained and tested on the transformed data. The resulting error rate
for every possible number of extracted features d is calculated, and
is averaged over all 100 random partitions of the data set. The
minimum average error rate over different d values is reported in
Table 3 for each method. The corresponding optimal d denoted by
do, and the average required processing time for the training phase
of each feature extractor is also reported in this table. Furthermore,
for each data set, corresponding to a row of the table, the signifi-
cantly superior error rate performance is boldfaced if it exists. The
significance is decided according to the signed ranked test [20] with
a significance level of 0.01.

From Table 3, the proposed Matusita method provides an overall
performance improvement compared to the Chernoff method. Ma-
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DS LDA Matusita Chernoff
%AER do t (ms) %AER do t (ms) %AER do t (ms)

(a) 2.71 1 0.64 2.49 1 6.85 2.62 1 5.14
(b) 37.20 1 0.50 37.64 1 4.30 37.52 1 3.48
(c) 13.26 1 3.93 8.14 3 51.12 13.50 3 29.94
(d) 2.20 1 0.44 1.66 1 3.78 1.93 1 6.00
(e) 3.28 1 0.47 3.04 4 4.94 3.00 4 8.62
(f) 39.94 2 0.64 41.66 2 15.29 42.55 7 83.10
(g) 8.01 6 0.96 5.91 8 31.60 6.27 8 215.85

Table 3: The best percentage average error rate (%AER), the cor-
responding optimal dimension (do), and the CPU time required for
training (t) for different methods on UCI data sets.

tusita provides the lowest error rate with a significant margin for data
sets (c) and (g), and provides minimum or close to minimum error
rates in other rows. In data sets (f) and (g) with relatively larger
number of classes, Matusita has outperformed Chernoff. Consider-
ing these results in conjunction with the results of Section 4, they
indicate that compared to the Chernoff method, the Matusita method
provides an improved tolerance against inaccuracies in the Gaussian-
ity and the estimated parameters of the data.

In data sets (b) and (f), the LDA’s superior performance can be
attributed to respectively low heteroscedasticity (JH = 7.63) and
low number of samples per class (214/6 ≈ 35.7) from Table 2. A
small sample size leads to inaccuracy in the estimated covariances
used by heteroscedastic methods.

Furthermore, from Tables 2 and 3, the Matusita method is com-
putationally faster than the Chernoff method by a factor of almost
C − 1 for each data set, although it is slightly slower than the Cher-
noff method when C = 2. This efficiency was achieved by de-
ploying an inherently multi-class separability measure rather than a
pairwise extension of a two-class measure.

6. CONCLUSIONS

This paper provided a heteroscedastic extension of LDA based on
the Matusita separability measure. This measure is preferred over
the previously used pairwise Chernoff distance due to its original
multi-class formulation, which is related to multi-class error bounds
[14] and is computationally more efficient than the Chernoff crite-
rion by a factor of C − 1. A non-iterative approach similar to LDA
and the Chernoff method was proposed for minimization of the Ma-
tusita criterion. Finally, the simulation results verified improvements
in both computational efficiency and tolerance to the parameter esti-
mation errors.
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