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ABSTRACT
This paper considers the problem of feature selection for

composite hypothesis testing: The goal is to select, from

m candidate features, r relevant ones for distinguishing the

null hypothesis from the composite alternative hypothesis;

the training data are given as L sequences of observations,

of which each is an n-sample sequence coming from one

distribution in the alternative hypothesis.

What is the fundamental limit for successful feature se-

lection? Are there any algorithms that achieve this limit? We

investigate this problem in a small-sample high-dimensional

setting, with n = o(m), and obtain a tight pair of achievabil-

ity and converse results:

(i) There exists a function f(L, n, r,m) such that if

f(L, n, r,m) ↓ 0, then no asymptotically consistent

feature selection algorithm exists;
(ii) We propose a feature selection algorithm that is asymp-

totically consistent whenever f(L, n, r,m) ↑ ∞.

Index Terms— Feature selection, high-dimensional

model, composite hypothesis testing, small sample, super-

vised learning

1. INTRODUCTION

Composite hypothesis testing problems arise from many

anomaly detection applications such as surveillance and net-

work security, medical and public heath (See the survey

paper [1] for many applications). The statistics of normal

behavior are given and the goal is to infer whether a sequence

of test data is from the normal behavior (null hypothesis) or

from one of many possible abnormal behaviors (alternative

hypothesis).

In many applications, a large number of features are mea-

sured, while in fact only a small subset of features are relevant
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for inferring which hypothesis is true. By identifying the set

of relevant features and only using them in the test, it is possi-

ble to improve the test performance of the test (see Lemma 1).

The technique of finding these relevant features is known as

feature selection.

In this paper, we study the problem of feature selection

for composite hypothesis testing. Our goal is evaluate the

performance of different feature selection algorithms, and our

criterion is sample complexity. We first derive a necessary

condition, also called a hardness result or lower-bound, on the

number of samples required for successfully identifying the

relevant features. We then design an algorithm whose sample

complexity almost achieves this lower-bound.

To be more specific, in the composite hypothesis testing

problem considered in this paper, the null distribution π of the

normal behavior is known, or can be estimated precisely from

records of the normal behavior. The set of alternative distri-

butions Πm is unknown, and the amount of data recording

abnormal behaviors is limited.

The number of recorded abnormal behaviors L, the num-

ber of data samples n for each anomaly, the number of

candidate features m, and the number of relevant features

r are quantities of interest when characterizing the perfor-

mance of feature selection algorithms. We consider a small-

sample high-dimension model in which L, n,m, r → ∞ and

n = o(m), and ask how (L, n) should depend on (m, r)
in order for the algorithm to be asymptotically consistent,

i.e., the probability of correctly learning the relevant features

converges to one.

The main contribution of this paper is identifying the

fundamental limit, described by a function f(L, n, r,m) and

proposing a near optimal algorithm:

(i) Hardness result: If f(L, n, r,m) ↓ 0, then no asymp-

totically consistent feature selection algorithm exists;

(ii) Achievability result: The proposed feature selec-

tion algorithm is asymptotically consistent whenever

f(L, n, r,m) ↑ ∞.

Precise statements are given in Theorem 1.
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1.1. Related work

There are many approaches to feature selection (See [2]). The

statistic used in the proposed feature selection algorithm bears

some similarity to the chi-square statistic commonly used in

feature selection techniques (e.g. [3]). It is not clear whether

the feature selection algorithm based on the chi-square statis-

tic also achieves the fundamental limit given in Theorem 1.

The results in [4] and [5] both theoretically characterize

sample complexity of feature selection algorithms for the bi-

nary classification problem, in which there is one distribution

in each class. Their results do not apply to the composite hy-

pothesis testing problem studied in this paper, and the proof

techniques are also different.

The high-dimensional model considered in this paper is

similar to those investigated in [6, 7] and the converse result

in this paper is based on a similar proof technique.

2. MODEL AND DEFINITIONS

2.1. Composite hypothesis testing

An i.i.d. sequence Zt
1 = {Z1, . . . , Zt} is observed, where

Zi ∈ [m] := {1, 2, . . . ,m}. Each element in [m] is a fea-

ture. Let P(Z) denote the set of distributions over [m]. Under

normal behavior, Zi has a known distribution π ∈ P(Z). Un-

der abnormal behaviors, Zi is distributed according to some

μ ∈ Πm ⊂ P(Z), where Πm is set of possible abnormal be-

haviors. A test is a sequence of binary-valued functions {φt}
with φt : [m]t → {0, 1}.

A fixed set S ⊆ [m] represents the set of “relevant fea-

tures”. Relevancy is made precise as follows: The set of al-

ternative distributions Πm is a subset of

{μ ∈ P(Z) : dS(μ, π) ≥ ε, d[m]\S(μ, π) = 0}, (1)

where the pseudo-metric dS is defined as

dS(μ, π) =
∑
j∈S

|μ(j)− π(j)|.

Two assumption are made when Πm is assumed to take the

form in (1): 1) The anomaly behaviors are sufficiently differ-

ent from normal behavior, modeled by dS(μ, π) ≥ ε; 2) Only

features in S are relevant, modeled by d[m]\S(μ, π) = 0. The

second assumption can be relaxed, as discussed in Section 6.

How does the cardinality of S , which we denote by r,

affect the performance of tests? This is studied in [6] where

S = [m] and π is the uniform distribution. The results in that

paper can be extended to the current case where S ⊆ [m]:

Lemma 1. Suppose n = o(m), π is uniform, and Πm is given
by (1). Then

(i) There exists an asymptotically consistent test if

lim
m→∞

t2ε4

m(r/m)4
= ∞.

(ii) No asymptotically consistent test exists if

lim
m→∞

t2ε4

m(r/m)4
= 0.

2.2. Feature selection

Suppose the normal behavior π is known exactly, a rea-

sonable assumption when the amount of data for normal

behavior is large. Suppose L independent anomaly data

sequences {Y n,(l)
1 , 1 ≤ l ≤ L} are given, each represent-

ing a different abnormal behavior: Each sequence Y
n,(l)
1 =

{Y (l)
i , . . . , Y

(l)
n } is i.i.d with μ(l) ∈ Πm. The assumptions

on μ(l) are given in Section 3. We note that the distribution

of the test sequence might differ from the distribution of any

training sequence {Y n,(l)
1 , 1 ≤ l ≤ L}.

Our task is to design a feature selection algorithm ψ =
{ψ1, . . . , ψn}, given by a sequence of set-valued functions:

ψ : [m]n×L → 2[m]. The feature selection algorithm is

asymptotically consistent, if for any collection of {μ(l)},

lim
m→∞P{ψn({Y n,(l)

1 , 1 ≤ l ≤ L}) = S} = 1,

3. MAIN RESULTS

We begin with assumptions on the training data used for fea-

ture selection: First, the number of samples per anomaly and

the number of relevant features are both small:

Assumption 1. n = o(m), lim supm→∞ r/m < 1.

Second, no feature plays a dominant role:

Assumption 2. There exists c2, c1 > 0 such that c2/m ≤
π(j) ≤ c1/m, μ

(l)(j) ≤ c1/m.

Third, the information on the relevant features given by

the training data increases with L:

Assumption 3. η := minj∈S 1
L

∑L
l=1 |μ(l)(j)−π(j)| � ε/r.

Notation h � g means 0<liminf h/g ≤ limsuph/g <∞.

Note that we do not exclude the case where μ(l)(j) = π(j) for

some l and j ∈ S , i.e., some abnormal behaviors are differ-

ent from the normal behavior only on a subset of the relevant

features.

Our main result answers the following question: How fast

should L and n grow in order for a feature selection algorithm

to be asymptotically consistent?

Theorem 1. Suppose Assumption 1-3 hold.

(i) There exists a feature selection algorithm that is
asymptotically consistent, if

lim
m→∞

n2ε4L

(r/m)4m2 logm
= ∞. (2)

(ii) No feature selection algorithm is asymptotically
consistent, if

lim
m→∞

n2ε4L

(r/m)4m2 logm
= 0. (3)

We have the following remarks:
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(i) Consider the case n = m/polylog(m), and ε � r/m.

Theorem 1 implies the number of observed abnor-

mal behaviors L should increase with m as L =
polylog(m), i.e., the relevant features can be correctly

identified even when the number of irrelevant features

is much larger than the number of observed anomalies.
(ii) Consider the cases ε = αr/m where α = o(1): The

difference between the normal and abnormal behaviors

becomes less concentrated as α decreases. Theorem 1

implies n2L needs to increase proportionally to 1/α,

indicating that less concentration makes it harder to

learn the features.
(iii) Note that n, L enters f(L, n, r,m) as n2L. Suppose

we have a fixed budget of total number of samples

nL. This result implies that in the small sample case

n = o(m), it is advantages to spend more samples on

each abnormal behavior instead of observing more ab-

normal behaviors.

4. PROOF OF THE HARDNESS RESULT

We focus on the case where π is the uniform distribution; ex-

tensions to the non-uniform case are straightforward. We first

construct a hypothesis testing problem that is no harder than

the feature selection problem, i.e., an asymptotically consis-

tent feature selection algorithm gives an asymptotically con-

sistent test. We then show that no asymptotically consistent

test exists for the testing problem when (3) holds.

We first construct the distributions used to define the two

hypotheses in the hypothesis testing problem. Assume (m −
r+2)/4 is an integer; extensions to other cases are straightfor-

ward. Let T = m− r + 2. For each y ∈ [T/2], z ∈ {−1, 1},

define the distribution μy,z as follows:

μy,z(j) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
m − η j is odd, m ≥ j > T
1
m + η j is even, m ≥ j > T
1
m − ηz j = 2y − 1
1
m + ηz j = 2y

1
m otherwise.

Note that the distribution μy,z is in the set Πm with S =
{2y, 2y − 1} ∪ {T + 1, . . . ,m}. Let z ∈ {−1, 1}L, and

denote j = {j1, . . . , jL}. Define the following distribution on

[m]L:

μy,z(j) =

L∏
l=1

μy,zl
(jl).

Define two sets of distributions A and B as

A = {μy,z : 1 ≤ y ≤ T

4
, z∈ {−1,1}L},

B = {μy,z :
T

4
+ 1 ≤ y ≤ T

2
, z ∈{−1,1}L}.

Consider the following binary composite hypothesis

testing problem: L sequences of observations of length n

{Y n,(l)
1 , 1 ≤ l ≤ L} are given, where Y

(l)
i is i.i.d. with

marginal μ(l). Our task is to decide between the following

two hypothesis:

H0 : μ ∈ A, H1 : μ ∈ B. (4)

Roughly speaking, both hypotheses agree that {T+1, . . . ,m}
is a subset of relevant features. The rest two features are in

the first half and second half of [T/2] forH0 andH1, respec-

tively.

Suppose ψ is an asymptotically consistent feature selec-

tion algorithm. Then the test that decides in favor of H1 if(
ψn({Y n,(l)

1 }) ∩ [T/2] = ∅ is asymptotically consistent.

We now show that there is no asymptotically consistent

test for the problem (4). Our main tool is the following results

in [8]. Let conv(·) denote the convex hull of a set. The set

An is the set of nth-order product of distributions in A, i.e.,

An = {μn : μ ∈ A}.

Lemma 2. If there are a sequence of distributions {νn} ∈
conv(An), {ν̄n} ∈ conv(Bn), such that

lim
n→∞ ‖νn − ν̄n‖1 < 2,

then no asymptotically consistent test exists for the binary hy-
pothesis testing problem (4).

The key is then to construct the two distributions νn and

ν̄n. We use the “mixture measure” technique. Let μn
y,z de-

note the nth-order product of μy,z, i.e. the distribution of a

length-n sequence generated i.i.d. with μy,z. We construct

two mixing distributions, one from conv(An) and the other

from conv(Bn):

νn =
4

T

T/4∑
y=1

1

2L

∑
z

μn
y,z, ν̄n =

4

T

T/2∑
y=T/4+1

1

2L

∑
z

μn
y,z.

We can show that

Lemma 3.

‖νn − ν̄n‖1 ≤ 8 exp{4n2m2(ε/r)4L− log(m− r)}.
Therefore, the condition in Lemma 2 is satisfied when (3)

holds. We conclude that no asymptotic consistent feature se-

lection algorithm exists.

5. A FEATURE SELECTION ALGORITHM

We propose the following feature selection algorithm and

show that it is asymptotically consistent when (2) holds. De-

note the empirical distribution for the sequence Y
n,(l)
1 by

Γ(l)(j) = 1
n

∑n
i=1 I{Y (l)

i = j}. Denote

gj =
1
L

∑L
l=1 g

(l)
j ,

where

g
(l)
j =

⎧⎨
⎩

1
2n

2π(j)2, nΓ(l)(j) = 0
−nπ(j), nΓ(l)(j) = 1

1, nΓ(l)(j) ≥ 2.
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The proposed feature selection algorithm is

ψ = {j ∈ [m] : gj ≥ τ}. (5)

To bound the probability of error, we begin with the expecta-

tion and variance of gj when j ∈ S and j /∈ S are given in

Lemma 4.

Lemma 4. If j /∈ S , then

E[gj ] = O(n3/m3).

If j ∈ S , then

E[gj ] = O(n3/m3) + 1
2

1

L

L∑
l=1

[(μ(l)(j)− π(j))2].

Regardless of whether j ∈ S , we have

Var (g(l)j ) = O(n2/m2).

Since
∑L

l=1(μ
(l)(j) − π(j))2/L ≥ η2, we choose τ =

η2/4. Applying Chebyshev’s inequality leads to an achiev-

ability result that is not as good as (2): Instead of m2 logm,

we would have m3 in the denominator of (2). To improve it

to m2 logm, we need to apply the Chernoff bound. Denote

the log-moment-generating function

Λj,(l)(θ) = log(E[exp(θg
(l)
j )].

Lemma 5. The following holds for fixed θ,
L∑

l=1

Λj,(l)(θ) = θE[gj ] +
1
2θ

2O((
n

m
)2). (6)

Proof for Lemma 5. The following well-known expansion of

the log-moment-generating function can be obtained via the

mean value theorem:

Λj,(l)(θ) = θE[g
(l)
j ] + 1

2Var
ν̌
(l)
j
[g

(l)
j ]

where the twisted distribution ν̌(l)j is defined as follows: For

random variable h,

E
ν̌
(l)
j
[h] =

Eμ(l) [eθ̄g
(l)
j h]

Eμ(l) [eθ̄g
(l)
j ]

,

where θ̄ satisfies |θ̄| ≤ |θ|. Our choice of g
(l)
j satisfies g

(l)
j =

O(1). Therefore, for θ = O(1), we obtain

Var
ν̌
(l)
j
[g

(l)
j ] = O(Var [g(l)j ]).

The conclusion follows from the independence of the se-

quence {g(l)j , 1 ≤ l ≤ L}. ��
Proof for the achievability result in Theorem 1. Applying the

Chernoff bound, we obtain the following upper-bound:

P{gj ≥ τ |j /∈ S} ≤ inf
θ
exp{−θLτ +

L∑
l=1

Λj,(l)(θ)}. (7)

Substituting (6) into (7), we obtain for any θ = O(1), there

exist κ > 0 such that for large enough n,

P{gj ≥ τ |j /∈ S} ≤ exp{−θLτ + 1
2θ

2κL(
n

m
)2}.

Take θ = m2τ/(n2κ), and note that τ = η2/4, we obtain

P{gj ≥ τ |j /∈ S} ≤ exp{−n2m2η4L/(32κ)}. (8)

Similarly, we can bound

P{gj ≤ τ |j ∈ S} ≤ exp{−n2m2η4L/(32κ)}. (9)

Apply the union bound with (8) and (9), we obtain

P{ψ �= S} ≤ exp{log(m)− n2m2η4L/(32κ)}.
If the assumption limm→∞ n2ε4L

(r/m)4m2 logm = ∞ holds, then

the exponent on the right-hand side decreases to −∞, thus the

feature selection function ψ is asymptotically consistent. ��

6. CONCLUSIONS AND DISCUSSIONS

We have shown there is a fundamental limit on the sample

complexity of the feature selection algorithm for compos-

ite hypothesis testing and propose an algorithm that nearly

achieves this limit. Possible extensions of results include

The assumption that d[m]\S(μ, π) = 0 can be relaxed.

For example, one can assume that |μ(j) − π(j)| ≤ ε̄ for j /∈
S . The same feature selection algorithm will work with a

different choice of τ (See Equation (5)).

The feature selection algorithm is proposed for the case

n/m is small. To extend the algorithm to the case where

n/m is moderate, we could assign different coefficients for

nΓ(l)(j) = k for k ≥ 2, rather than aggregating nΓ(l)(j) ≥ 2
together. Those coefficients can be determined using a finer

asymptotic expansion of E[gj ].
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