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ABSTRACT
Multiple measurement vector (MMV) problem addresses the

recovery of a set of sparse vectors that have common sparsity

pattern. In this paper, we consider a variant of the MMV

problem where the common sparsity pattern is obfuscated

by an additive noise. Specifically, we study the conditions

for perfect reconstruction of the original sparsity pattern.

Based on these, we develop a tuning-free algorithm for re-

covering jointly sparse solutions via the transfer optimization

approach. We provide a preliminary numerical evaluation to

illustrate our approach.

Index Terms— Sparse representation, joint sparsity,

multiple-measurement vector (MMV), optimization trans-

fer

1. INTRODUCTION

The problem of computing sparse solutions for linear inverse

problems has received notable attention in the last years, es-

pecially in the signal processing community. Many different

methods have been proposed to solve this problem [1] and

[2]. In order to enhance the recoverability, additional infor-

mation about the underlying solution structure, such as group

sparsity, can be taken into account.

In our work, we consider a special case of the group spar-

sity structure, which is a problem of reconstruction of jointly

sparse solutions, also known as the multiple measurement

vector (MMV) problem. Jointly sparse solutions share the

same nonzero support and appear in many applications, such

as distributed compressive sensing, source localization, and

magnetic resonance imaging. Our interest was motivated by

the problem of deconvolving the threshold ionization ener-

gies of a measurement recorded from a Resonant Electron

Capture-Time of Flight (REC-ToF) mass spectrometer. Theo-

retically, a fragment ion has distinct sparse ionization thresh-

old energies. However, the measured ionization curve is con-

voluted by the electron energy distribution of the ionization

source, which may be characterized through measurement.

Most notable among the methods that have been devel-

oped to solve the MMV problem are the forward sequential
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search-based method [3], ReMBo (which, reduces a MMV

problem to a set of singular measurement vector problems)

[4], a method based upon the alternating direction principle

[5], along with many others. The variation of problems that

allow the presence of noise was recently studied in [2], [6].

Our work is focused on finding the jointly sparse solution

to the MMV problem whose the original sparsity pattern has

been obfuscated by an additive noise. We study the condi-

tions for perfect reconstruction of the original sparsity pat-

tern. Based on these, we propose a tuning-free algorithm for

recovering jointly sparse solutions via the optimization trans-

fer approach. We provide a preliminary numerical evaluation

of our approach.

2. PROBLEM FORMULATION

In this paper we define matrices by uppercase letters and vec-

tors by lowercase letters. For a matrix X , xi indicates its i-th
row and xj indicates its j-th column.

Let ‖X‖R0 denote the number of rows of matrix X that

have non-zero elements, i.e., ‖X‖R0 = card{i|‖XT ei‖2 �=
0}, where ei the canonical vector satisfying ei(j) = 1 for

j = i and 0 otherwise. The multiple measurement vector

(MMV) problem can be formulated as

minimize
X

‖X‖R0

subject to

n∑
l=1

‖Alxl − yl‖22 � ε,
(1)

where the mixing matrices Al ∈ R
m×k may be different ∀l =

1, n, and the solution vectors xl ∈ R
k×1 and measurement

vectors yl ∈ R
m×1 are such that yl = Alx0l + ξl, with vector

ξl = [ξl1, ξl2, . . . , ξln]
T representing the additive noise ∀l =

1, n and X0 ∈ R
k×n is the original s0 row-sparse matrix we

are interested in recovering.

Here, n � 1 is the number of measurement vectors. We

assume n � m. Matrices Al ∈ R
m×k are known and ob-

tained from the physics of the problem. Without loss of gen-

erality we assume that rank(Al) = m, m � k, ∀l = 1, n.

The main aim is to obtain the solution matrix X such that

each solution vector xl is sparse and all solution vectors have

a common sparsity pattern, i.e., the indices of the nonzero

elements of xl must be the same ∀l = 1, n.
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2.1. Sparse recovery properties

The problem in (1) can be used to obtain row-sparse solution

for X . However, the solution (1) may exhibit a trade-off be-

tween data fit and sparsity. A sparse solution may result in

a poor data fit while a solution which provides a good data

fit may have many non-zero rows. This trade-off can be con-

trolled via ε. We are interested in a tuning-free method, i.e., a

method which fixes ε to a given value which guarantee exact

recovery of the row-sparsity. The following results provide a

theoretical justification for selecting ε to guarantee such exact

recovery.

Proposition 2.1. Recall the matrix to be recovered X0 ∈
R

k×n and define the solution set Sε = {X|∑n
i=1 ‖Aixi −

yi‖22 ≤ ε}. Assume that X0 ∈ Sε. Then, X∗ the solution to
(1) satisfies ‖X∗‖R0 ≤ ‖X0‖R0 .

Proof. Since X∗ minimizes ‖X‖R0 over the set Sε, we have

‖X∗‖R0
≤ ‖X‖R0

for all X ∈ Sε. Specifically since X0 ∈
S, we have that ‖X∗‖R0 ≤ ‖X0‖R0 .

This proposition suggests the optimization in (1) produces

a solution with row-sparsity which is less than or equal to the

row-sparsity of the true X0 if Sε is sufficiently large to contain

the original X0.

Proposition 2.2. Let matrix X0 satisfy ‖X0‖R0 = s0. Define

γ(X) = min
i=1,n

{‖eTi X‖2|‖eTi X‖2 �= 0}.

Then, for any matrix X̃ satisfying ‖X̃ −X0‖F < γ(X0), we
have ‖X̃‖R0 ≥ ‖X0‖R0 .

Proof. (By contradiction) Assume that there exist X̃ such that

‖X̃‖R0 < ‖X0‖R0 , then ‖X̃−X0‖F ≥minX′,‖X′‖R0<‖X0‖R0

‖X ′−X0‖F ≥ mini,‖eTi X0‖2 �=0 ‖eTi X0‖2 = γ(X0). By con-

tradiction to ‖X̃−X0‖F < γ(X0), the assumption ‖X̃‖R0 <
‖X0‖R0 is invalid and hence ‖X̃‖R0 ≥ ‖X0‖R0 .

This proposition suggests that there exists no matrix X̃ of

lower row-sparsity then that of X0 in the γ(X0)-Frobenius

ball neighborhood of X0. Intuitively, small changes to matrix

X0 which has sufficiently large row norms cannot set those

rows to zero and hence cannot lower the row-sparsity of X0.

If the solution set Sε is a subset of the γ(X0)-Frobenius

ball neighborhood of X0 then X∗ must satisfy ‖X∗‖R0 ≥
‖X‖R0 (in addition to ‖X∗‖R0 ≤ ‖X‖R0 ), thereby guaran-

teeing ‖X∗‖R0 = ‖X‖R0 . Next, we present a proposition

which sets the conditions for Sε ⊂ the γ(X0)-Frobenius ball

neighborhood of X0.

Proposition 2.3. Assume X0 ∈ Sε. Let matrices Ai be such
that matrix Ai satisfy 2s0 - restricted isometry property with
δ2s0 < 1. Specifically ‖Aixi‖2 ≥ (1− δ2s0)‖xi‖2. If

γ(X0) >
2
√
ε

1− δ2s0

then Sε ⊂ γ(X0)-Frobenius ball neighborhood of X0 and
‖X∗‖R0 = ‖X0‖R0 .

Proof. Consider X ∈ Sε, then

‖X −X0‖F =

√∑
i

‖xi − x0i‖22

≤
√∑

i ‖Ai(xi − x0i)‖22
1− δ2s0

≤
√∑

i(‖Aixi − yi‖2 + ‖Aix0i − yi‖2)2
1− δ2s0

≤
√
4ε

1− δ2s0
< γ(X0)

Since any X ∈ Sε is in the γ(X0)-neighborhood of X0, then

Sε ⊂ γ(X0)-Frobenius ball neighborhood of X0. Moreover,

the solution X∗ ∈ Sε and hence ‖X∗‖R0 ≤ ‖X0‖R0 by

proposition 2.1. Since Sε ⊂ γ(X0)-Frobenius ball neigh-

borhood of X0, X∗ ∈ γ(X0)-Frobenius ball neighborhood

of X0 and therefore ‖X∗‖R0 ≥ ‖X0‖R0 . We conclude that

‖X∗‖R0 = ‖X0‖R0 .

This proposition suggests that if the true X0 is in the solu-

tion set Sε and each one of its s0 non-zero rows has sufficient

large l2-norm, then the solution of (1) will have the same row-

sparsity as that of X0 thereby recovering the sparsity of X0,

while providing an 2
√
ε

1−δ2s0
bound on the the Frobenius norm

of the error X∗ −X0.

One of the key issues of exact rank recovery involves find-

ing an ε which guarantees that X0 ∈ Sε. In the statistical

setting, this typically can be obtained by understanding the

noise characteristics. The following proposition suggests how

to determine the value of ε.

2.2. Determining ε based on the probabilistic noise model

In general, a statistical analysis of the term
∑

i ‖Aix0i−yi‖22
can be performed to obtain in probability guarantees on the

inequality
∑

i ‖Aix0i − yi‖22 ≤ ε.

Proposition 2.4. Let matrix X0 ∈ R
k×n be given. Let yi =

Aix0i + ξi, ∀i = 1, n, where ξi ∼ Normal(0, Im×m). Let
p ∈ (0, 1) be given and set ε according to

ε(p) = (χ2
nm)−1(p).

Then with probability 1− p, X0 ∈ Sε.

Proof. Note that
∑n

i=1 ‖Aixi − yi‖22 =
∑n

i=1

∑m
j=1 ξ

2
ij ∼

χ2
nm then

P(

n∑
i=1

‖Aixi − yi‖22 ≤ ε) = P(

n∑
i=1

m∑
j=1

ξ2ij ≤ ε) ≥ 1− p
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3. CONVEX JOINT SPARSE MINIMIZATION

3.1. Convex optimization formulation

The optimization problem in (1) is difficult to solve due to

its combinatorial nature. An effective solution approach is

to substitute the original objective function with the mixed

�p,q norm of X [7, 8, 9], thereby transforming the original

problem into a more tractable convex optimization problem.

The mixed �p,q norm of X is defined as ‖X‖p,q =

(
∑k

i=1 ‖xi‖pq)1/p, where xi is the ith row of X .

Using this approach with p = 1 and q = 2, we trans-

form the original problem in (1) into the convex optimization

problem below.

minimize
X

‖X‖1,2

subject to

n∑
l=1

‖Alxl − yl‖22 � ε,
(2)

3.2. Algorithmic solution

There are many approaches to solving convex problems. In

this paper, we propose an algorithm based on the optimization

transfer approach. The main idea of the optimization transfer

approach is to find an appropriate surrogate function such that

it is easier to minimize the surrogate function than the objec-

tive function. Furthermore, minimizing the surrogate function

also leads to minimizing the intended objective function. We

begin with the definition of a surrogate function.

Definition 3.1. Function G(x, x̃) is a surrogate function
for F (x) if the conditions: (i) G(x, x̃) � F (x) and (ii)
G(x, x) = F (x) are satisfied.

Lemma 3.1. Let G(x, x̃) be a surrogate function for F (x),
then F (x) is nonincreasing under the update

x̃t+1 = argmin
x

G(x, x̃t), (3)

Proof. F (xt+1) � G(xt+1, xt) � G(xt, xt) = F (xt).

Lemma 3.1 states that running the update rule above for

the surrogate function G(x, x̃) iteratively will lead to mini-

mizing the objective function F (x). Thus, selecting the ap-

propriate surrogate function for which the update can be com-

puted efficiently is essential for the optimization transfer al-

gorithms.

We proceed with the derivation of a surrogate function

based on which, we develop an optimization transfer algo-

rithm for solving the optimization problem in (2). The La-

grangian function for this problem is given by

L (X;λ) = ‖X‖1,2 + λ(

n∑
l=1

‖Alxl − yl‖22 − ε). (4)

First we note that

‖X‖1,2 � 1

2

[
Tr

(
XTDX

)
+ ‖X̃‖1,2

]
, (5)

where D ∈ R
k×k is a diagonal matrix of the form

D = Diag(
1

‖x̃1‖2 , . . . ,
1

‖x̃k‖2 )

The inequality (5) follows from the fact that for any two

points z and z̃,

| z |� 1

2

(
z2

| z̃ |+ | z̃ |
)
. (6)

Since Tr
(
XTDX

)
=

∑n
i=1 x

T
i Dxi, we have L (X;λ) ≤

U(X, X̃;λ) where

U(X, X̃;λ) =
1

2

n∑
i=1

xT
i Dxi + λ

n∑
l=1

‖Alxl − yl‖22 + C (7)

and C = 1
2‖X̃‖1,2 − λε is independent of X . It is not

hard to see that U(X, X̃;λ) satisfies the definition of a

surrogate function for L (X;λ). Furthermore, the update

step in Lemma 3.1 can be done efficiently by differentiating

U(X, X̃;λ) with respect to each column xi separately and set

it to zero to obtain:

x̃i
t+1 =

(
D(Xt) + 2λAT

i Ai

)−1
2λAT

i yi. (8)

Note that D depends on Xt.

Now, for a given λ, the update rule in (8) can be used to

determine the corresponding optimal X(λ). In practice, the

true optimal λ∗ is unknown. We now describe an algorithm to

determine the optimal x∗
i by adjusting λ towards the true λ∗.

If λ∗ = 0, then L (X∗; 0) = ‖X∗‖1,2 = 0, which implies

X∗ = 0 and
∑n

l=1 ‖yl‖22 ≤ ε. The last condition enables

us to obtain the optimal X∗ = 0 immediately. On the other

hand, when λ∗ is strictly greater than 0, then by complemen-

tary slackness condition,
∑n

l=1 ‖Alx
∗
l − yl‖22−ε = 0. There-

fore, we decrease λ when
∑n

l=1 ‖Alx
∗
l − yl‖22 < ε to penal-

ize the difference. Otherwise, we increase λ. The pseudo

code for the proposed algorithm is provided in Algorithm 1.

4. SIMULATION RESULTS

To evaluate the performance of an algorithm and verify that

selection of ε is correct, i.e., produces correct row-sparsity

recovery, we constructed a synthetic data set following the

additive Gaussian noise model. To produce A, we generate

each entry in an independent fashion according to N(0, 1)
and normalized each column such that the l2 of each column

is 1. We produced X0 with row-sparsity of three by setting all

entry in 3 random rows to γ/
√
n so that the l2 norm of the all

non-zero rows of X0 is greater than γ in Prop. 2.2. Each yi
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Algorithm 1 Row-sparsity recovery algorithm

Input: (A, y, λmin, λmax, ε, δ).
Output: X∗.

1: if
∑n

l=1 ‖yl‖22 ≤ ε) then
2: X∗ = 0, Terminated

3: else
4: while |∑n

l=1 ‖Alx
∗
l − yl‖22 − ε| > δ do

5: λ = (λmin + λmax)/2
6: Find X∗(λ) using the update rule in (8)

7: if
∑n

l=1 ‖Alx
∗
l − yl‖22 < ε then

8: λmax = λ
9: else

10: λmin = λ
11: end if
12: end while
13: end if

was computed by Aixi + ξi, where ξi(j) ∼ N (0, 1). Finally,

ε was calculated using Prop. 2.4. The vectors {yi}, matrices

{Ai}, and ε were provided as input to our algorithm.

To evaluate the accuracy of the method, we scanned

through a range of values of ε and computed the sparsity of

X∗(ε). In Fig. 1, we present a plot of the row-sparsity of X∗

as a function of epsilon. Additionally, we present two lines.

The first, is a vertical line indicating the value of ε computed

via Prop. 2.4. The second line is a horizontal line indicating

the true row-sparsity of X0. We observe that the sparsity of

X∗ at the proposed ε matches the sparsity of X0. Moreover,

we observe that the proposed ε is close to the LHS of the line

segment corresponding to the correct sparsity. This indicates

the potential of the proposed ε to find exact row-sparsity

solution with a low data fit error value.
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Fig. 1. Row-sparsity of the solution X∗ as a function of ε. The

vertical line corresponds the value of ε proposed by Proposi-

tion 2.4 and the horizontal line marks the true sparsity value.

5. CONCLUSION

We presented a variant of the MMV problem whose common

sparsity pattern is obfuscated by an additive noise. Specifi-

cally, we derived the conditions for perfect reconstruction of

the original sparsity pattern. Based on these, we presented a

tuning-free algorithm for recovering jointly sparse solutions

which is based on optimization transfer. Our simulations in-

dicate the capability of the proposed approach to recover the

correct joint sparsity pattern.
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