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ABSTRACT

Adaptive online algorithms for simultaneously extracting nonlinear
eigenvectors of kernel principal component analysis (KPCA) are de-
veloped. KPCA needs all the observed samples to represent basis
functions, and the same scale of eigenvalue problem as the number
of samples should be solved. This paper reformulates KPCA and
deduces an expression in the Euclidean space, where an algorithm
for tracking generalized eigenvectors is applicable. The developed
algorithm here is least mean squares (LMS)-type and recursive least
squares (RLS)-type. Numerical example is then illustrated to sup-
port the analysis.

Index Terms— Recursive least squares, kernel principal com-
ponent analysis, subspace tracking

1. INTRODUCTION

Principal component analysis (PCA) is a crucial technology in areas
of statistical signal processing, such as machine learning, communi-
cations, and image processing. Principal component (PC) is the one
that maximizes its variance over a set of multivariate signals, and the
problem to find the PC is reduced to the one to find the first eigen-
vector of the correlation matrix of signals. Even though the signal is
observed in a high dimensional space, that is, the signal vector con-
sists of a large number of elements, PCA enables us to represent the
signals in a much lower dimensional subspace. This leads to efficient
data compression and feature extraction.

Nevertheless, many signals and data are inherently nonlinear in
nature and linear methods such as PCA do not do a good job in
capturing features of the data. The traditional PCA only fits a set of
signals that are linearly generated, since PCA, by definition, assumes
that an observed signal is a linearly generated stochastic process. To
deal with nonlinear multivariate signals, an efficient approach is to
make use of the Mercer kernels, which behaves as the inner prod-
uct in the space of higher dimensional functions onto which the ob-
served signals are mapped. More specifically, let {ui ∈ Rd}Ni=1 be a set
of multivariate signals, and φ(·) be a nonlinear map from R

d to the
reproducing kernel Hilbert space (RKHS) denoted byH . The kernel
approach defines the inner product inH as 〈φ(ui), φ(u j)〉 = κ(ui, u j),
where κ(·, ·) is a symmetric positive definite map, Rd × Rd → R,
called Mercer kernel.

PCA constructed in this kernel-induced space is called kernel
PCA (KPCA), which was first formulated by Schölkopf et al. [1].
The problem of KPCA is to find eigenvectors of Gram matrix, which
is given as Ki j = κ(ui, u j). This readily implies that the more we
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observe signals, the larger the size of the Gram matrix is. This means
that KPCA may require very high computational load when we have
a large number of samples. A solution to this problem is to apply the
kernel Hebbian algorithm (KHA) [2], where an online PCA called
the generalized Hebbian algorithm (GHA) [3] is extended. Also the
learning rate of KHA has been studied [4], where an annealing-type
learning rate is introduced to accelerate the update speed.

Even though these iterative algorithms are shown to be com-
putationally effective, they are not fully “online” or “adaptive” in
the context of adaptive signal processing. Ding et al. addressed this
problem and developed an adaptive KPCA algorithm [5]. However,
this algorithm needs to solve an eigenvalue problem at each update,
which demands high computational load and brings about the over-
adaptation problem (see papers on eigenvector tracking [6, 7], for
example). A recent study by Washizawa [8] addressed the problem
to extend KHA to an adaptive algorithm, which can be classified
into the steepest descent type or LMS-type. However, the algorithm
is derived in Hilbert space, and the projection onto a subspace is
necessary to stabilize the algorithm.

This paper develops a novel adaptive KPCA algorithm that can
track eigenvectors in nonlinear space with kernels. The main fea-
ture is that the established algorithm is structures similar to LMS
and RLS, which are standard in adaptive signal processing. This
means that the algorithms do not need eigenvalue decomposition.
Moreover, we show the reformulation of kernel PCA problem in the
standard Euclidean space. This means that it is not necessary any
longer to consider higher dimensional Hilbert space. This makes the
formation simpler and clearer.

2. KERNEL PCA AND ITS EUCLIDEAN
REPRESENTATION

LetH be a RKHS. Principal component analysis inH is to find a set
of r functions in H that can “compress” observed data. We denote
this set by S = {ϕi ∈ H}ri=1, which minimizes the approximation
cost:

J0[{ϕi}ri=1] =
N∑

i=1

∥∥∥∥∥∥∥φi −
r∑

j=1

〈ϕ j, φi〉ϕ j

∥∥∥∥∥∥∥
2

,

where φi ∈ H is a function associated with the ith observed signal,
that is, it is defined in RKHS as φi = φ(ui) = κ(·,ui). Inner product
〈ϕ j, φi〉 is called the jth principal component (PC) of observed data,
and ϕ j is called the jth kernel principal eigenvector.

Each element inS can be represented by the superposition of lin-
early independent functions inH . Therefore, the problem is reduced
to finding an operator with lower rank that approximates elements in
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the space in the sense of mean squared error:

J0[W] =
N∑

i=1

‖φi −WW∗φi‖2,

where ·∗ is its adjoint,

W = [ϕ1, . . . , ϕr] = ΨA, (1)

A ∈ R
M×r, and Ψ = [ψ1, . . . , ψM], ψi ∈ H , i = 1, . . . ,M. Ψ deter-

mines the subspace where the approximation is conducted. It should
be noted that ifΨ is assumed fixed, optimizing W is equivalent to op-
timizing A. We also define Φ = [φ1, . . . , φN], which is a collection
of functions associated with observed samples. Let R(·) be the range
of an operator. Traditionally, KPCA gives in the space spanned by
{φi}Ni=1 the r-dimensional subspace that gives approximation, that is,
R(Ψ) = R(Φ), implying that M = N.

However, this paper addresses more general case, say, R(Ψ) �
R(Φ) and M � N. Note that R(Ψ) is not necessarily a subspace of
R(Φ), which is the case considered in [9]. This setting is more nat-
ural in the context of adaptive signal processing, since in an on-line
system, it is not realistic that all the observed samples are buffered.
Several kernel adaptive filtering algorithms has been developed with
this assumption (see [10], for example).

In the rest of this section, we will confirm that the problem of
finding KPCA is reduced to a generalized eigenvalue problem in the
Euclidean space. Let PR(Ψ) be the orthogonal projector onto R(Ψ).
From the Pythagorean theorem, the original cost function becomes

J0[W] =
N∑

i=1

(
‖PR(Ψ)(φi −WW∗φi)‖2 + ‖PR(Ψ)⊥ (φi −WW∗φi)‖2

)
.

(2)
Since it is verified (see [11], for example) that PR(Ψ) = Ψ(Ψ∗Ψ)−1Ψ∗,
PR(Ψ)Ψ = Ψ. Then, the first term of (2) reads

‖PR(Ψ)(φi −WW∗φi)‖2 = ‖(Ψ∗Ψ)−1/2Ψ∗PR(Ψ)(φi − ΨAATΨ∗φi)‖2
= ‖M−1/2(Ψ∗φi − MAATΨ∗φi)‖2
= ‖M−1/2(hi − MAAT hi)‖2,

where M = Ψ∗Ψ and hi = Ψ
∗φi. Since PR(Ψ)⊥Ψ = 0, together with

(1), the second term in the summation of (2) can be written as

‖PR(Ψ)⊥ (φi −WW∗φi)‖2 = ‖PR(Ψ)⊥φi‖2,
which is indeed a constant. Therefore, the original cost function can
be rewritten as J0[W] = J1[A] + J2, where

J1[A] =
N∑

i=1

‖M−1/2(hi − MAAT hi)‖2, J2 =

N∑
i=1

‖PR(Ψ)⊥φi‖2.

Again, J2 is a constant, which is ignored.
Define H = Ψ∗Φ and R =

∑N
i=1 hihT

i = HHT . Then, J1[A] can
be written as

J1[A] = tr[M−1R] − 2tr[AT RA] + tr[AT RAAT MA]. (3)

The minimizer of this cost function can be obtained by solving the
generalized eigenvalue problem of symmetric matrix pair (R, M), as
studied in [6]. When Ψ = Φ, H is the same as the Gram matrix,
that is, H = K; therefore, the KPCA problem becomes a standard
eigenvalue problem of K.

As pointed out in [7,12], it should be noted that J1[A] = J1[AV],
where V is any r × r orthogonal matrix. This implies that by min-
imizing J1, we can only track the subspace spanned by A, not the

eigenvectors. This basis ambiguity problem can be solved by us-
ing a so-called weighted updating rules (see [13], for example of
PCA). As suggested in [12], instead of using (3), we use the modi-
fied weighted cost given as

J[A] = tr[M−1R] − 2tr[DAT RA] + tr[AT RAAT MA], (4)

where D is a diagonal matrix with positive entries in descending
order.

3. ADAPTIVE TRACKING ALGORITHM

To develop the updating rule at time k, we introduce time-varying pa-
rameters. Let u[k] be the kth input signal and define φ[k] = φ(u[k]).
Let Φ[k] = [φ[1], . . . , φ[k]] : H → R

k. We assume that the number
of entries in Ψ varies with time, thus we denote it by L[k]. Define
Ψ[k] : H → R

L[k] as an operator consisting of L[k] functions in
Φ[k]. Let R[k] be the estimation of R at time k.

Using (4) and the above defined quantities, the kth update of A
is obtained by minimizing the following time-varying cost function:

Jk[A[k]] =tr[M−1[k]R[k]] − 2tr[DAT [k]R[k]A[k]]

+ tr[AT [k]R[k]A[k]AT [k]M[k]A[k]],

where M[k] = Ψ∗[k]Ψ[k] and A[k] ∈ RL[k]×r. It should be noted that
φ[k] represented in terms of Ψ[k] is given by h[k] = Ψ∗[k]φ[k]. Let
us introduce the notation, c[k] = AT [k − 1]h[k], which will be used
later on.

3.1. LMS-Type Algorithm

By direct differentiation of Jk[A[k]] with respect to A[k], we get the
gradient given as ∂A[k]Jk = −2(R[k]A[k]D−M[k]A[k]AT [k]R[k]A[k]).
To develop an LMS-like algorithm, in a way similar to the derivation
of LMS, R[k] is replaced by h[k]hT [k]. Therefore, the update rule
can be the following. In the algorithm, F1(·), F2(·), and F3(·) will be
defined and discussed later.

Algorithm 1 LMS-type online KPCA algorithm
1: Ψ[k] = F1(Ψ∗[k − 1])
2: h[k] = Ψ∗[k]φ[k]
3: Ã[k − 1] = F2(A[k − 1])
4: c[k] = ÃT [k − 1]h[k]
5: M[k] = F3(M[k − 1])
6: g[k] = Ã[k − 1]c[k]
7: A[k] = Ã[k − 1] + η(h[k]cT [k]D − M[k]g[k]cT [k])

3.2. RLS-Type Algorithm

By defining Rhc[k] = R[k]A[k] and Rc[k] = AT [k]R[k]A[k], the cost
function can be rewritten as [6]

Jk[A[k]] = tr[M−1[k]R[k]]−2tr[DAT [k]Rhc[k]]+tr[Rc[k]AT [k]M[k]A[k]],

which is quadratic, therefore, it is minimized by

A[k] = M−1[k]Rhc[k]DR−1c [k]. (5)

Assume that Ψ[k] = Ψ[k − 1]1. Then the update of R[k] can be
made as

R[k] = βR[k − 1] + h[k]hT [k]. (6)
1The argument of the case when Ψ[k] � Ψ[k − 1] will be given in another

paper.
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We apply the so-called projection approximation [14] described as
R[k]A[k] ≈ R[k]A[k − 1]. With this approximation and (6), we
obtain the following iterative updates:

Rhc[k] ≈ βRhc[k − 1] + h[k]cT [k],

Rc[k] ≈ βRc[k − 1] + c[k]cT [k].

Moreover, we define P[k] = M−1[k], and Q[k] = R−1c [k]. Based
on the above preparation, RLS-type updating rule can be derived as
follows. In the algorithm, F4(·) will be defined later.

Algorithm 2 RLS-type online KPCA algorithm
1: Do 1 to 4 of Algorithm 1

2: g[k] =
Q[k − 1]c[k − 1]

β + cT [k]Q[k − 1]c[k]
3: P[k] = F4(P[k − 1])
4: Q[k] = β−1

(
Q[k − 1] − g[k]cT [k]Q[k − 1]

)
5: d̂[k] = Q[k]Dc[k]
6: Â[k] = A[k − 1] + P[k]h[k]d̂T [k] − ĉ[k]gT [k]
7: A[k] = R-orthonormalize( Â[k])

3.3. Update of Dictionary Operator

In the context of kernel adaptive filtering, a coherence-based dictio-
nary design method has been proposed [10]. We apply this design
method for the proposed KPCA tracking algorithms.

For simplicity, suppose that the norm of the kernel in RKHS is
unity, that is, κ(u,u) = 1, u ∈ Rd, which is satisfied by the Gaussian
kernel. The scheme adds φ[k] = κ(·, u[k]) into Ψ if the following
condition holds:

max
1≤ j≤L[k−1]

(Ψ∗[k − 1]φ[k]) j ≤ δ, (7)

where δ > 0 is the positive coherence threshold and (·) j denotes the
jth element of a vector. Thus, we obtain the following update rule
for Ψ[k] and A[k], If (7) is satisfied.

F1(Ψ[k − 1]) = [Ψ[k − 1], φ[k]],

F2(A[k]) =

[
A[k]
01×r

]

Moreover, P[k] = M−1[k] should be updated. Note that the number
of vectors added in the dictionary is finite as discussed in [10]. In the
following, we develop the update rule of P[k] based on the block ma-
trix inversion formula to reduce the computational complexity. Note
that the last element of h[k] is always unity because of the assump-
tion for the kernel, therefore, h[k] can be denoted with subvector
ĥ[k] by h[k] = [ĥT [k], 1]T . Define m[k] = P[k − 1]ĥ[k]. Finally, we
get

F4(P[k−1]) =

[
P[k − 1] 0

0 0

]
+

1

1 − ĥT [k]m[k]

[
m[k]mT [k] −m[k]
−mT [k] 1

]

Furthermore, it can be verified that the computation of P[k]h[k] is
significantly simplified to

P[k]h[k] =

[
0L[k−1]×1

1

]
.

Proof is omitted due to lack of the space.

4. NUMERICAL EXAMPLE

For the evaluation of performance, we use the benchmark used in
[10], which is the nonlinear system described by the difference equa-
tion:

sk = (0.8−0.5 exp(−s2
k−1))sk−1−(0.3+0.9 exp(−s2

k−1))sk−2+0.1 sin(sk−1π)

The data were generated from the initial condition, s0 = 0.1 and s1 =

0.1. Outputs sk were corrupted by a zero-mean Gaussian noise with
variance equal to 0.01. We define a data vector stacked with these
nonlinear signals. More specifically, u[k] = [sk−d+1, . . . , sk]T ∈ Rd.

We compared the following three algorithms:

1. LMS-type algorithm,

2. RLS-type algorithm,

3. SubKHA algorithm [8] given as the following update:

A[k] = Ã[k − 1] + η(P[k]h[k]cT [k]D − g[k]cT [k]).

In the numerical simulation, the size of sample vectors was set
to 6 (d = 6) and the first two kernel eigenvectors (r = 2) were
tracked. The number of generated sample vectors was 5000 (N =
5000). We employed here the Gaussian kernel given as κ(ui,u j) =
exp(−0.1‖ui − u j‖2). The coherence threshold was set to 0.95 (δ =
0.95). For all the algorithms, the following initial parameters were
used: Ψ[0] = [φ[0], . . . , φ[r − 1]], P[0] = M−1[0], and A[0] =
(P1/2[0])1:r, where (·)1:r represents the r left columns. The learning
rate and forgetting factor were set: η = 0.02 and β = 0.98, respec-
tively.

The target kernel principal eigenvectors, ϕ∗i was obtained with
all the sample vectors through the eigenvalue decomposition of the
corresponding Gram matrix of size 5000×5000, whereas we tracked
the kernel eigenvectors, ϕi[k], with the above algorithms. The simi-
larity between ϕ∗i and ϕi[k] was evaluated by direction cosine:

direction cosine[k] =
|〈ϕ∗i , ϕi[k]〉|
‖ϕ∗i ‖‖ϕi[k]‖ .

Moreover, the approximation ability of this adaptive KPCA was eval-
uated by the MSE at each time instance:

MSE[k] =N−1
N∑

i=1

‖φi −W[k]W∗[k]φi‖2

=N−1
{
tr[K] − 2tr[AT [k]H[k]HT [k]A[k]]

+ tr[(AT [k]M[k]A[k])(AT [k]H[k]HT [k]A[k])]
}
,

where H[k] = Ψ∗[k]Φ.
Figures 1 and 2 depicts the evolution of direction cosines of the

first and second kernel principal eigenvectors. We can see that RLS-
type algorithm gives the fastest convergence to the 1st kernel eigen-
vector represented by the all 5000 samples, while the proposed al-
gorithms as well as SubKHA chose only eighteen (18) samples to
compose the dictionary operator (Ψ) in the end of iterations. More-
over, we observe that the 1st eigenvector is tracked faster than the
2nd. This is the same phenomena as standard eigenvector tracking
algorithms exhibit [6, 7].

To evaluate the behavior of algorithms from another aspect, MSE
is calculated and plotted in Fig. 3. In the sense of MSE, RLS-type
gives the fastest convergence and indeed the MSE of RLS-type after
convergence is very close to the MSE of KPCA. We see a jump at
around the 10th iteration, which may be from oscillation of the 2nd
eigenvectors observed in Fig. 2.
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Fig. 1. Direction cosine of the 1st principal kernel eigenvector
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Fig. 2. Direction cosine of the 2nd principal kernel eigenvector

5. CONCLUSION

Motivated by recursive least squares algorithms, we have developed
a fast online algorithm for simultaneously extracting kernel princi-
pal eigenvectors. It has been proven that the problem to find kernel
principal components is reduced to a generalized eigenvalue prob-
lem. The adaptive algorithm can be derived from the mean squares
error criterion. We have shown that the tracking problem of kernel
eigenvectors is reduced to the one of generalized eigenvectors.
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