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ABSTRACT

Matrix co-factorization involves jointly decomposing several data
matrices to approximate each data matrix as a product of two fac-
tor matrices, sharing some factor matrices in the factorization. We
have recently developed variational Bayesian matrix co-factorization
where factor matrices are inferred by computing variational posterior
distributions in the case of Gaussian likelihood with Gaussian prior
placed on factor matrices. Empirical Bayesian method was used,
so hyperparameters are set to specific values determined by maxi-
mizing marginal likelihood. In this paper we present a hierarchi-
cal Bayesian model for matrix co-factorization in which we derive a
variational inference algorithm to approximately compute posterior
distributions over factor matrices as well as hyperparameters, plac-
ing Gaussian-Wishart prior on hyperparameters. Numerical exper-
iments on MovieLens data demonstrate that the hierarchical varia-
tional Bayesian matrix co-factorization alleviates the over-fitting bet-
ter than the empirical variational Bayesian matrix co-factorization,
leading to the improved performance in terms of MAE and RMSE.

Index Terms— Bayesian matrix factorization, cold-start prob-
lems, collaborative prediction, matrix co-factorization variational in-
ference

1. INTRODUCTION

Matrix factorization is a method for seeking a low-rank latent struc-
ture of data, approximating the data matrix as a product of two or
more factor matrices. Matrix factorization is a popular tool for col-
laborative prediction, where unknown ratings are predicted by user
and item factor matrices which are determined to approximate a
user-item matrix as their product [2, 5–7, 9, 12]. Probabilistic ma-
trix factorization was introduced in [9], in which a linear model
with Gaussian observations was considered to learn user-specific
and term-specific latent features, which became equivalent to the
minimization of sum-of-squared errors with quadratic regularization
terms. Bayesian approaches to matrix factorization are proposed
based on the approximate inference such as the variational infer-
ence [5] or sampling [8], since the exact inference for the proba-
bilistic model is intractable. Bayesian matrix factorization is pre-
ferred over other methods for collaborative filtering, since Bayesian
approach alleviates over-fitting by integrating out all model parame-
ters.

Collaborative prediction algorithms suffer from the cold-start
problem, where the users or items do not have a sufficient num-
ber of ratings. To handle the cold-start problem, an efficient use
of side information, such as item content information and user de-
mographic information is crucial. Matrix co-factorization has been
developed, as a promising approach to systematically exploiting side
information. Matrix co-factorization jointly decomposes multiple

data matrices to approximate each data matrix as a product of two
factor matrices, sharing some factor matrices in the factorization.
Various methods and applications include supervised latent semantic
indexing [17], content+link for classification [18], collective factor-
ization [10], group nonnegative matrix factorization [3], nonnegative
matrix co-tri-factorization [14], semi-supervised nonnegative matrix
factorization [4], and co-factorization on compressed sensing [16],
drum source separation [1].

Bayesian matrix co-factorization (BMCF) is often preferred over
other methods for collaborative filtering, since Bayesian approach al-
leviates over-fitting by integrating out all model parameters. BMCF
infers factor matrices in the decomposition, by computing poste-
rior distributions approximately in the case of Gaussian likelihood
with Gaussian prior placed on factor matrices. A sampling-based
BMCF was proposed in [11], where the posterior computation re-
quires storing multiple number of samples which is not appropriate
for the large-scale collaborative prediction problems. Variational ap-
proximation for BMCF was developed in [13, 15], where empirical
variational Bayesian method was applied, i.e., hyperparameters are
set to specific values determined by maximizing marginal likelihood.

In this paper we present hierarchical variational Bayesian
matrix co-factorization (HVBMCF), in which we place Gaussian-
Wishart prior on hyperparameters (which are treated as random vari-
ables as well) and develop variational inference algorithm in the case
of Gaussian likelihood with Gaussian prior on factor matrices. Nu-
merical experiments on MovieLens Data demonstrate that our pro-
posed method, HVBMCF improves the generalization performance
in the task of collaborative prediction, compared to the empirical
variational Bayesian matrix co-factorization (EVBMCF) [15].

2. RELATED WORK

This section briefly reviews our previous work [15] on EVBMCF
which is the basis of our proposed method, HVBMCF. Suppose
that we are given a set of dyadic data matrices, X = {X(a,b) ∈
R

Na×Nb} for (a, b) ∈ R, where R denotes a set of relations be-
tween two entities. For example, in the case where (a, b) is the
user-item relation, the (ia, ib)-entry, denoted by x

(a,b)
iaib

, represents
the rating of item ib by user ia.

EVBMCF assumes a linear Gaussian model, in which x
(a,b)
iaib

is

generated by an inner product of two vectors, u(a)
ia

and u
(b)
ib

, each of

which corresponds to the column vector of factor matrices U (a) ∈
R

d×Na and U (b) ∈ R
d×Nb involving entities a and b, respectively:

x
(a,b)
iaib

= u
(a)�
ia

u
(b)
ib

+ ε
(a,b)
iaib

,

for ∀(a, b) ∈ R and (ia, ib) ∈ O(a,b), where O(a,b) is a set
of observed entries, and ε

(a,b)
iaib

is Gaussian noise with zero mean
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and precision ρ(a,b), which reflects uncertainty in the model, i.e.,
ε
(a,b)
iaib

∼ N (ε
(a,b)
iaib

| 0, (ρ(a,b))−1). For instance, in the case of
R = {(a, b), (a, c)}, where (a, b) is user-item relation and (a, c)
is user-demographic information relation, the co-factorization of
two matrices X(a,b) and X(a,c) shares the factor matrix U (a), i.e.,
X(a,b) ≈ U (a)�U (b) and X(a,c) ≈ U (a)�U (c).

Gaussian prior distribution is assumed for factor matrices U =
{U (a) | a ∈ E} where E is a set of entities:

p
(
U

(a)
)

=

Na∏
ia=1

N

(
u

(a)
ia

∣∣∣0,(Λ(a)
)−1

)
.

where Λ(a) is the precision matrix which is the inverse of the covari-
ance matrix. Then the likelihood is given by

p(X|U) =
∏

(a,b)∈R

p
(
X

(a,b)
∣∣∣U (a),U (b)

)

=
∏

(a,b)∈R

∏
(ia,ib)∈O

N

(
x
(a,b)
iaib

∣∣∣u(a)�
ia

u
(b)
ib

,
(
ρ(a,b)

)−1
)
.

The graphical representation is illustrated in Fig. 1.
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Fig. 1. Graphical representation of the probabilistic model for
EVBMCF.

The variational Bayesian inference considers a lower-bound on
the log marginal likelihood

log p(X ) = log

∫
p(X ,U)dU

≥

∫
q(U) log

p(X ,U)

q(U)
dU ≡ F(q),

where the Jensen’s inequality was used and F(q) denotes the vari-
ational lower-bound to be maximized. Assume that the variational
distribution q(U) is factorized:

q(U) =
∏
a∈E

q
(
U

(a)
)
.

Variational posterior distributions, q∗(·), are determined by maxi-
mizing the variational lower bound F(q), leading to

log q∗
(
U

(a)
)

∝ EU\U(a) {log p(X ,U)} ,

where the expectation is taken with respect to the variational distri-
butions over all variables excluding U (a). In EVBMCF, hyperpa-
rameters, {Λ(a) | a ∈ E}, and noise variance {ρ(a,b) | (a, b) ∈ R}
are set to specific values determined by maximizing the variational

lower bound F(q). EVBMCF works fairly well for cold-start prob-
lems, however, the prediction accuracy often degrades as iterations
proceed, due to the over-fitting caused by the point estimates of hy-
perparameters. Thus, the early-stopping, in general, is required to
obtain accurate predictions. See [15] for more details on EVBMCF.

3. HIERARCHICAL VARIATIONAL BAYESIAN MATRIX
CO-FACTORIZATION

In this section we present the main contribution of our paper, in
which treat hyperparameters as random variables, placing Gaussian-
Wishart prior on hyperparameters, in order to construct a hierarchi-
cal Bayesian model for matrix co-factorization. We develop a varia-
tional inference algorithm where we iteratively compute variational
posterior distributions over factor matrices in the co-factorization.

As in EVBMCF described in Section 2, we assume the same lin-
ear Gaussian model with Gaussian prior placed on factor matrices.
In contrast to EVBMCF, we place Gaussian-Wishart prior distribu-
tion on hyperparameters μ(a) and Λ

(a):

p
(
μ

(a),Λ(a)
)
= N

(
μ

(a)
∣∣∣μ0,

(
γ0Λ

(a)
)−1

)
W

(
Λ

(a)
∣∣∣Ω0, ν0

)
,

where W(Λ(a)|Ω0, ν0) is a Wishart distribution over Λ(a). We as-
sume Gamma distribution over the noise precision variables:

p
(
ρ(a,b)

)
= G

(
ρ(a,b)

∣∣∣α0, β0

)
,

where α0 and β0 are shape and inverse scale parameters. The graph-
ical representation is illustrated in Fig. 2.

( , )a b ∈R

( )

a

a

i
u ( )

b

b

i
u

( , )

a b

a b

i i
x

( , )a b
ρ

1, ,
a a

Ni = � 1, ,
b b

Ni = �

( )a
Λ

( )b
Λ

( )a
μ

( )b
μ

Fig. 2. Graphical representation of the probabilistic model for
HVBMCF.

We define Θ = {ρ(a,b),μ(a),Λ(a) | (a, b) ∈ R, a ∈ E}. Then,
the marginal likelihood is written as

p(X ) =

∫ ∫
p(X ,U ,Θ)dUdΘ.

The variational lower-bound F(q) is given by

log p(X ) ≥

∫ ∫
q(U ,Θ) log

p(X ,U ,Θ)

q(U ,Θ)
dUdΘ ≡ F(q).

We assume that the variational distribution q(U ,Θ) is factorized:

q(U ,Θ) =
∏
a∈E

q
(
U

(a)
) ∏

(a,b)∈R

q
(
ρ(a,b)

)
∏
a∈E

q
(
μ

(a)
∣∣∣Λ(a)

)
q
(
Λ

(a)
)
.
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Table 1. Variational posterior distributions and corresponding parameter updates are summarized for HVBMCF.

Variational posterior Parameter updates Sufficient statistics

q∗
(
U (a)

)
m

(a)
ia

=
(
L

(a)
ia

)−1 〈
Λ

(a)
〉〈

μ(a)
〉 〈

u
(a)
ia

〉
= m

(a)
ia

=
∏

ia
N

(
u

(a)
ia

∣∣∣m(a)
ia

,
(
L

(a)
ia

)
−1

)
+
(
L

(a)
ia

)−1 ∑
b|(a,b)∈R

〈
ρ(a,b)

〉∑
ib|(ia,ib)∈O x

(a,b)
iaib

〈
u

(b)
ib

〉 〈
u

(a)
ia

u
(a)�
ia

〉
L

(a)
ia

=
〈
Λ

(a)
〉
+

∑
b|(a,b)∈R

〈
ρ(a,b)

〉∑
(ia,ib)∈O

〈
u

(b)
ib

u
(b)�
ib

〉
=

(
L

(a)
ia

)−1

+m
(a)
ia

m
(a)�
ia

q∗
(
ρ(a,b)

)
α(a,b) = α0 + |O(a,b)|/2

〈
ρ(a,b)

〉
= G

(
ρ(a,b)

∣∣∣α(a,b), β(a,b)
) β(a,b) = β0 +

1
2

∑
(ia,ib)∈O(a,b)

((
x
(a,b)
iaib

)2

− 2x
(a,b)
iaib

〈
u

(a)
ia

〉� 〈
u

(b)
ib

〉)
= α(a,b)/β(a,b)

+ 1
2

∑
(ia,ib)∈O(a,b) tr

(〈
u

(a)
ia

u
(a)�
ia

〉〈
u

(b)
ib

u
(b)�
ib

〉)
q∗

(
μ(a)

∣∣∣Λ(a)
)

φ(a) = γ0
γ0+Na

μ0 +
1

γ0+Na

∑
ia

〈
u

(a)
ia

〉 〈
μ(a)

〉
= φ(a)

= N

(
μ(a)

∣∣∣φ(a),
(
γ(a)

Λ
(a)

)
−1

)
γ(a) = γ0 +Na

q∗(Λ(a))
(
Ω

(a)
)−1

= Ω
−1
0 +

∑
ia

〈
u

(a)
ia

u
(a)�
ia

〉 〈
Λ

(a)
〉

= W(Λ(a)|Ω(a), ν(a)) + γ0Na

γ0+Na

(
μ0 −ω(a)

)(
μ0 −ω(a)

)�

−Naω
(a)ω(a)� = ν(a)

Ω
(a)

ν(a) = ν0 +Na

ω(a) = 1
Na

∑
ia

〈
u

(a)
ia

〉

Variational posterior distributions over factor matrices and hyperpa-
rameters are determined by maximizing the variational lower bound
F(q), leading to

log q∗
(
U

(a)
)

∝ EU\U(a),Θ

{
log p(X ,U ,Θ)

}
,

log q∗
(
ρ(a,b)

)
∝ EU,Θ\ρ(a,b)

{
log p(X ,U ,Θ)

}
,

log q∗
(
μ

(a),Λ(a)
)

∝ EU,Θ\μ(a),Λ(a)

{
log p(X ,U ,Θ)

}
,

where their functional forms and corresponding parameter updates
are summarized in Table 1.

4. NUMERICAL EXPERIMENTS

We applied the proposed HVBMCF to the collaborative prediction
in the cold-start situations, and compared the performance with
EVBMCF [15]. In addition, we compared the performance of
the empirical variational Bayesian matrix factorization (EVBMF),
which is a special case of EVBMCF exploiting only the user-item
rating matrix. The MovieLens data, which consists of the 5-star
ratings of 943 users for the 1682 movies was used. In the EVBMCF
and HVBMCF, additional user information (age, gender, and oc-
cupation) and movie information (genre) were used in the matrix
co-factorization. Additional information is coded with the binary
values, for example, movie genre data is coded by a vector of length
18, where each element indicates one of the 18 movie categories,
and the value 1 represents the movie belongs to the corresponding
genre.

Since the user cold-start problem occurs in the situation that the
test users do not provide sufficient number of ratings, we randomly
selected 200 test users and took out most of their ratings, to remain
s ratings for each user. We generated the datasets for the five dif-
ferent values of s, which were 0, 5, 10, 15, and 20. We used mean
absolute error (MAE) and root mean squared error (RMSE) as the

performance measures, which are computed as

MAE =
1

N

N∑
i=1

|ri − r̂i|,

RMSE =

√√√√ 1

N

N∑
i=1

(ri − r̂i)2,

where N is the total number of test data points, r̂i and ri are the
predicted rating and the true rating of the i-th test data, respectively.
For each value of s, we ran the algorithms 100 times with different
set of test users and initial values of sufficient statistics. Number of
latent factors d is set to 20, and hyperparameters are set to α0 = 1,
β0 = 1, ν0 = 1, and W0 = I . The averaged MAE and RMSE
were summarized in Table 2(a). We also simulated the item and user
cold-start cases, where we also eliminated all the ratings for the 100
randomly selected movies from each dataset generated for the user
cold-start cases (Table 2(b)). Both EVBMCF and HVBMCF showed
better performance than EVBMF for all cases, showing the benefit
of the matrix co-factorization over the single matrix factorization
in the cold-start situations. HVBMCF showed comparable perfor-
mance to the EVBMCF in user cold-start cases, and showed better
performance in the item and user cold-start cases. HVBMCF worked
better than EVBMCF in the situation with less available information,
which shows better generalization performance of HVBMCF.

Moreover, HVBMCF showed much stable evolvement pattern
of the prediction accuracy than EVBMCF, while the prediction ac-
curacy of EVBMCF degrades as iterations proceed because of the
over-fitting. Fig. 3 illustrates an exemplary behavior in terms of
RMSE, for the case of item and user cold start with s = 0.

5. CONCLUSIONS

In this paper, we have presented hierarchical variational Bayesian
matrix co-factorization (HVBMCF) which treats hyperparameters
as random variables, and places Gaussian-Wishart prior on them.
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Table 2. MAE and RMSE results for different number of available
ratings for each test user. (a) Simulation of user cold-start case. (b)
Simulation of user and item cold-start case.

(a) EVBMF EVBMCF HVBMCF
MAE RMSE MAE RMSE MAE RMSE

0 2.5403 2.7767 0.8238 1.0140 0.8182 1.0140
5 0.8281 1.0618 0.7895 0.9941 0.7856 0.9983
10 0.8032 1.0205 0.7446 0.9424 0.7485 0.9499
15 0.7474 0.9558 0.7426 0.9314 0.7315 0.9288
20 0.7421 0.9496 0.7348 0.9254 0.7318 0.9328
(b) EVBMF EVBMCF HVBMCF

MAE RMSE MAE RMSE MAE RMSE
0 2.5098 2.7584 0.8843 1.0857 0.8399 1.0437
5 0.9333 1.2412 0.8332 1.0550 0.7930 1.0046
10 0.8956 1.1863 0.7778 0.9857 0.7686 0.9743
15 0.8991 1.1948 0.7716 0.9789 0.7556 0.9589
20 0.8618 1.1535 0.7527 0.9555 0.7394 0.9418

0 20 40

Number of iterations

R
M

S
E

60 80 100

1.0

1.1

1.2

1.3

1.4

1.5

 

 

HVBMCF

EVBMCF

Fig. 3. Performance comparison between EVBMCF and HVBMCF
is shown in terms of RMSE.

A variational inference algorithm, which iteratively computes varia-
tional posterior distributions over factor matrices and hyperparam-
eters is presented for the hierarchical model. Numerical experi-
ments showed that the HVBMCF alleviates the over-fitting better
than EVBMCF, leading to the improved performance.
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