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ABSTRACT

Matrix factorization from a small number of observed entries has re-
cently garnered much attention as the key ingredient of successful
recommendation systems. One unresolved problem in this area is
how to adapt current methods to handle changing user preferences
over time. Recent proposals to address this issue are heuristic in
nature and do not fully exploit the time-dependent structure of the
problem. As a principled and general temporal formulation, we pro-
pose a dynamical state space model of matrix factorization. Our
proposal builds upon probabilistic matrix factorization, a Bayesian
model with Gaussian priors. We utilize results in state tracking, i.e.
the Kalman filter, to provide accurate recommendations in the pres-
ence of both process and measurement noise. We show how system
parameters can be learned via expectation-maximization and provide
comparisons to current published techniques.

Index Terms— collaborative filtering, Kalman filtering, recom-
mendation systems, expectation-maximization, learning

1. INTRODUCTION

Matrix factorization (MF), the decomposition of a matrix into a
product of two simpler matrices, has a long and storied history
in statistics, signal processing, and machine learning for high-
dimensional data analysis [1]. The approach garnered much atten-
tion for its successful application to recommendation systems based
on collaborative filtering, including the Netflix prize problem [2].
Recommendation is of interest in a variety of domains. The most
common examples are recommending movies, television shows, or
songs that a particular individual will rate highly, but there are many
other examples. Business analytics examples from marketing and
salesforce management include recommending products to a sales-
person to cross-sell and upsell that a particular customer is likely to
purchase, and recommending a sales team to a sales manager that
will be able to successfully sell to a particular business customer.

In these domains, customer preferences often follow a trajectory
over time. Customers may be interested in basic products at first
and then higher-end products later, or products for toddlers first and
for adolescents later; customers may need a sales team with greater
relationship-building expertise at first and technical expertise later.
Additionally, we can distinguish recommendation for discovery and
recommendation for consumption; new items are recommended in
the former whereas the same item may be repeatedly recommended
in the latter.

The MF approach to collaborative filtering usually includes
Frobenius-norm regularization [2], which is supported by a linear-
Gaussian probabilistic model known as probabilistic matrix fac-
torization or PMF [3]. Due to its linear-Gaussian nature, PMF
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lends itself to incorporating temporal trajectories through the state
space representation of linear dynamical systems [4] and algo-
rithms for estimation based on the Kalman filter [5, 6]. We pro-
pose a general recommendation model of this form and develop
an expectation-maximization (EM) algorithm to learn the model
parameters from data. The Kalman filter and Rauch-Tung-Striebel
(RTS) smoother [7] appear in the expectation step of the EM.

Several recent works also address dynamic and temporal issues
in recommendation. TimeSVD, a component of the Netflix prize-
winning algorithm, addresses temporal dynamics through a specific
parameterization with factors drifting from a central time, but un-
like our general formulation can only handle limited temporal struc-
ture [2]. The probabilistic tensor factorization approach does not
take temporal causality into account as we do [8]. The formulation
of [9] is based on nearest neighbor collaborative filtering rather than
MF, and is known to have scaling difficulties. The spatiotemporal
Kalman filter of [10] has a limited state evolution and convergence
issues, target tracking in recommendation space has no element of
collaboration and requires prior knowledge of the ‘recommendation
space’ [11], and the hidden Markov model for collaborative filter-
ing only captures evolution of a known attribute over time among
users [12]. The contribution of our paper is the development of a
principled and general MF-based approach to recommendation and
predictive analytics, including recommendation for consumption, in
which the given data samples arrive over time and contain significant
time dynamics.

2. PROBABILISTIC MATRIX FACTORIZATION

Recommendation systems comprise /N users and M items, along
with some measure of preference represented by a matrix O €
RN*M  For most practical applications, only a small fraction of the
entries of O are observed and are usually corrupted by noise, quanti-
zation, and different interpretations of the scaling of preferences. In
MF, each user and item is represented by a row vector of length K
denoted u; and v; respectively, corresponding to weights of K latent
factors. We concatenate the factors into matrices U € R™** and
V € RM*X The preference matrix is then O = UV”, meaning
the preference of user ¢ for item j is 0;; = (us,v;), a common
assumption in recommendation systems [2].

Under MF, latent factors are learned from past responses of users
rather than formulated from known attributes. Factors are not nec-
essarily easy to interpret and change dramatically depending on the
choice of K. The value of K is an engineering decision, balancing
the tradeoff of forming a rich model to capture user behavior and
being simple enough to prevent overfitting.

Given K, a common way to learn factor matrices and conse-

ICASSP 2012



quently the complete preference matrix O from limited observations
is the following program:

Bip 2 (o0 —uel) +MIIE+RlVIE )
i,7)€

where the set O contains observed preference entries, and (A1, A2)
are regularization parameters. This program can be solved efficiently
using stochastic gradient descent and has been experimentally shown
to have excellent root mean-square error (RMSE) performance [2].

More recently, the regularization of the above program was mo-
tivated by assigning Gaussian priors to the factor matrices U and V'
respectively [3]. Coined PMF, this Bayesian formulation means (1)
is justified as producing the maximum a posteriori (MAP) estimate
for this prior. In this case, the regularization parameters A; and A2
are effectively signal-to-noise ratios (SNR). Since O is not a linear
function of latent factors, the MAP estimate does not in general pro-
duce the best RMSE performance, which is the measure commonly
desired in recommendation systems. However, wisdom gained from
the Netflix Challenge and experimental validation from [3] show that
the MAP estimate provides very competitive RMSE performance
compared to other approximation methods.

3. STATE SPACE MODEL

Given the success of MAP estimation in linear-Gaussian PMF mod-
els and our interest in capturing time dynamics, we propose a linear-
Gaussian dynamical state space model of MF whose MAP estimates
can be obtained using Kalman filtering. We assume that user factors
u; () are functions of time and hence states in the state space model,
with bold font indicating the vector being random. In our proposed
model, we have coupled dynamical systems, and to adhere to typical
Kalman filter notation, we use x;; = u;(t) to denote the state of
user ¢ at time ¢.

For each user, the initial state x; ¢ is distributed according to
N (i, 3;), the multivariate Gaussian distribution with mean vector
1 and covariance matrix ;. The user-factor evolution is linear ac-
cording to the generally non-stationary transition process A;; and
contains transition process noise w; ¢ ~ N (0, Qs,¢) to capture vari-
ability of individuals. Taken together, the state evolution is described
by the set of equations:

Xt = AiXii—1 + Wit i=1,...,N. 2)

We assume that item factors evolve very slowly and can be con-
sidered constant over the time frame that preferences are collected.
Also, due to the sparsity of user preference observations, a particular
user-item pair at a given time ¢ may not be known. Thus, we incor-
porate the item factors through a non-stationary linear measurement
process H;; which is composed of subsets of rows of the item fac-
tor matrix V' based on item preferences observed at time ¢ by user 4.
Note that all H; ; are subsets of the same fixed V' and are coupled in
this way. We also include measurement noise z;,; ~ AN (0, R; ;) in
the model. The overall observation model is:

Vit = HitXit + 2it i=1,...,N. 3)

The product H; ;¢ in (3) parallels the (u;, v;) product in Sec. 2.
Again adhering to Kalman filter notation, we use y; + to denote the
observations, corresponding to the observed entries of O, now a ten-
sor in RMXN T,

The state space model can be generalized in many different ways
that may be relevant to recommendation systems, including non-
Gaussian priors, nonlinear process transformation and measurement
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models, and continuous-time dynamics. We focus on the linear-
Gaussian assumption and defer discussion on extensions to Sec. 6.

4. FACTORIZATION VIA LEARNING

In the regularized formulation (1), the MF task is learning user and
item factors given sparse observations. In our dynamical model, MF
is composed of two dependent tasks: learning model parameters that
govern the motion of states, and performing MAP estimation of user
factors.

Given the model parameters and access to observations for all
past times ¢ = 1,..., 7T, the MAP estimate of U(¢) can be found
using a noncausal Kalman filter called the RTS smoother. In the
PMF setting, N of these RTS smoothers run in parallel, all of which
share the same item factor matrix V' in the measurement process. We
call this architecture collaborative Kalman filtering (CKF). Let the
Kalman estimates and covariances be defined as:

,yi,s] (4)
,y’i,S) . (5)

Then, the Kalman filtering equations are as follows:

)’\(i,t|s =E [Xi,t | Yii,. ..

P45 = Var (xi¢ | yi1,---

ii,t+1|t = AiA,H—lii,t\t (6)
Py = Ai,t+1Pi,t\tAg:t+1 + Qi @)
Riop = Rippr)e + Kt (Yir — HiiRigje—1) (3)
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Rigr = Rige + Jit (ii,i+1\T - ﬁi,t+1|t) . (10)

Moreover, the RTS smoothing equations are:

Py = P + JiiHie (Pi,t+1|T — Pi,t+1\t) JiT,t (11)

Prr_yr=U—-KirHir)AirP;r_1j7-1 (12)

Pz = Piyedina (13)
+ Ji (Pi,t+1,t|T - Ai7t+1Pi,t|t) Jij,wtfly

where
T T -
K= Pi,t|t71Hi,t (Hi,tpi,ﬂtlei,t + Ri,t) (14)
Jii = Pi,t|tAz"Z:t+1Pi,_tTt71' (15)

The CKF steps above fit naturally in the expectation step of the
EM algorithm used to learn model parameters such as mean and co-
variance of the initial states, the transition process matrices, the pro-
cess noise covariances, the measurement process matrices, and the
measurement noise covariances. In learning the measurement pro-
cess matrices, we also get an estimate for the item factor matrix V,
which is the other ingredient in the MF problem. The EM algorithm
proceeds by alternating between the expectation step in which the
expectation of the likelihood of the observed data is evaluated for
fixed parameters, and the maximization step in which the expected
likelihood is maximized with respect to the parameters.

The model proposed in Sec. 3 is a fully general Gaussian state
space model whose parameters could be learned, but would require
many observation samples. In typical applications however, the ob-
servations are sparse and the parameters are heavily correlated in
time; thus we simplify the model to reduce the number of parame-
ters to learn. First, we make the approximation that parameters are
independent of time, meaning they do not change during the obser-
vation period. Second, we take the initial states to be iid (0, o))



for all users, meaning they are homogeneous enough to share similar
scalings of preferences. Last, we assume both process and measure-
ment noise are iid, reducing the learning to variances aé and 0%
respectively. With these simplifications, the variance parameters can
be chosen to minimize the log-likelihood as follows:

N
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where tr(-) denotes the trace operator. Learning of general X, Q
and R can be found easily through matrix differentiation but is not
explicitly stated here.

Expressions for the transition and measurement process matrices
that minimize log-likelihood are derived to be:

A= Ayinv(A;)  where (19)

N T
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H = Hyinv(H,) where (20)
N T
Hy = 3036 (Hit( Py + RiarXLyr ) Hi)
1=1 t=1
N T

fill (yl',tiz:t\THZt) :

Remembering that each H;; is a submatrix of V, the fill operator
expands its argument back to the size of V/, with zeros in the newly
added rows.

These results are novel but follow naturally from [6, Chap. 13].

5. EMPIRICAL RESULTS

To validate the effectiveness of Kalman learning compared to exist-
ing methods, we present results tested on generative data that follow
a state space model. For this work, two main reasons led to our de-
cision to use generative data rather than common datasets such as
Netflix. First, a goal of the work is to understand how algorithms
perform on preferences that evolved following a state space model.
It is not clear that common datasets used in the recommendation
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Fig. 1: State-tracking ability of CKF and timeSVD in three factor
dimensions. The true user factors are well-tracked using CKF after
parameters have been learned. However, timeSVD does not have
flexibility to track general state evolutions and gives poor RMSE.

systems literature match this model, and results would be too data-
specific and not illuminating to the goal at hand. Second, a genera-
tive dataset gives insight on how the algorithms discussed perform in
different parameter regimes, which is impossible in collected data.

We generate the item factor matrix V iid AV(0, o%) and the ini-
tial user factor matrix U(0) iid A(0, 0% ). Under the assumption
that user factors do not change much with time, the stationary tran-
sition process matrix A is the weighted sum of the identity matrix
and a random matrix, normalized so that the expected power of the
state x; ¢ is constant in time. We note that A can be more general
with similar results, but the normalization is important so that prefer-
ence observations do not change scales over time. Finally, iid noise
is added to both the transition and measurement processes as de-
scribed in (2) and (3). The observation triplets (4, j, ¢) are uniformly
drawn iid from all possibilities from the preference tensor.

We present performance results for a particular choice of pa-
rameters in Fig. 2, expressed in RMSE. Space limitations prevent
us from presenting results for other parameter choices, but they are
similar when the SNR is reasonable. For arbitrary initial guesses of
the parameters, we find learning of variances and process matrices to
converge and stabilize after about 10-20 EM iterations. As a result,
state tracking is reliable and approaches the lower bound specified
by the Kalman smoother output when the parameters, including the
item factor matrix V', are known a priori. The estimate for the entire
preference tensor O also performs well, meaning that CKF is a valid
approach for recommendation systems with data following a state
space model.

In contrast, current algorithms such as SVD and timeSVD per-
form poorly on this dataset because they cannot handle general dy-
namics in user factors. Thus, the algorithm becomes confused and
the estimates for the factor matrices tend to be close to zero, which
is the best estimate when no data is observed. As shown in Fig. 1,
the true trajectory of users may be that of an arc in factor space with
additive perturbations. While CKF is able to track this evolution us-
ing smoothed and stable estimates, both SVD and timeSVD fail to
capture this motion and hence have poor RMSE. SVD does not have
temporal considerations and would give a stationary dot in the factor
space. Meanwhile, timeSVD can only account for drift, meaning it
can move in a linear fashion from a central point. In fact, this con-
straint leads to worse RMSE for most parameter choices than SVD
because timeSVD overfits an incorrect model.
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Fig. 2: For this testbench, we set model dimensions to be (M, N, T, K) = (500,500,20,5) and variances to be (¢, 0%, aé, o%) =
(1,1,0.05,0.1). The item factor dynamics are controlled by A, which is a weighted average of identity and a random dense matrix. The
sampling factor is 0.005, meaning only 0.5% of the entries of the preference matrix are observed. For the generated data and crude initial
guesses of the parameters, RMSE performance is given for estimation of (a) Kalman parameters learned via EM; (b) user factors/states; and
(c) the preference matrix. We observe that EM learning is effective in estimating parameters through noisy data, and this translates to better
state tracking and estimation of the preference matrix. Convergence is fast and robust to initialization of parameters.

6. CONCLUSION

In this paper, motivated by recommendation systems for consump-
tion that arise in business analytics, we have proposed an extension
to Gaussian PMF to take into account trajectories of user behavior.
This has been done using a dynamical state space model from which
predictions were made using the Kalman filter. We have derived an
expectation-maximization algorithm to learn the parameters of the
model from previously collected observations. We have validated
the proposed CKF and shown its advantages over SVD and timeSVD
on generated data. Future work underway includes testing and com-
parison on real-world collected data.

In contrast to heuristic and limited prior methods that incor-
porate time dynamics in recommendation, the approach proposed
in this paper is a principled formulation that can take advantage
of decades of developments in tracking and algorithms for estima-
tion. To break away from linearity assumptions, the extended or un-
scented Kalman filter can be used. Particle filtering can be used for
non-Gaussian distributions, analogous to sampling-based inference
in Bayesian PMF [13].

Based on the state space model, we can also include a control
signal in future work to control what items are recommended to
users. There are a variety of reasons to include a control signal:
certain items may have corporate sponsorship or are high revenue
items, or certain media files may be cached at a wireless base station
and it is inexpensive to serve those items. The proposed dynamic
formulation can also be extended in a control-theoretic way to ad-
dress the cold start problem: recommending items to users with no
or little previous expressed preferences.
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