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ABSTRACT

A novel blind deconvolution is proposed to seek for basis patterns

and their location maps inside a nonnegative data matrix. Basis pat-

terns can have different sizes, and shift in independent directions.

Moreover, the location maps can be low-rank or rank-one matrices

composed by two relatively small and tall matrices or by two vectors.

A general framework to solve this problem together with algorithms

are introduced. The experiments on music and texture decomposi-

tion will confirm performance of our method, and of the proposed

algorithms.

Index Terms— nonnegative matrix deconvolution/factorization,

music decomposition, pattern extraction

1. PROBLEM FORMULATION

Convolutive nonnegative matrix factorization (CNMF) or

nonnegative matrix deconvolution (NMD) has found a num-

ber of applications in music analysis, source detection, image

processing [1, 2, 3, 4]. This kind of deconvolution seeks

for basis patterns which shift vertically [5] or horizontally

[1, 6, 7], or in both directions [8, 9] in the data matrix

Y = [y1 y2 . . . yJ] ∈ RI×J
+ , and can be modelled by

Y ≈ Ŷ =

P∑
p=1

A(p) ∗ X(p) =

P∑
p=1

Ŷ(p), (1)

where A(p) ∈ R
Rp×S p

+ are nonnegative basis patterns (objects)

whose locations and intensities are specified by location maps

(matrices) X(p) = [x
(p)

1
x

(p)

2
. . . x

(p)

Lp
] ∈ R

Kp×Lp

+ , I = Rp + Kp −

1, J = S p + Lp − 1, Rp � I, S p � J, p = 1, 2, . . . , P. The

symbol “*” denotes the 2-D convolution defined for Ŷ(p) =

[̂y
(p)

i, j
] = A(p) ∗ X(p) as ŷ

(p)

i, j
=

+∞∑
r=−∞

+∞∑
s=−∞

a
(p)
r,s x

(p)

i−r, j−s
, where en-

tries a
(p)
r,s and x

(p)

k,l
are set to zero if they are outside A(p), X(p),

respectively. The roles of A(p) and X(p) are interchangeable

within the model.

Normally, pattern sizes (Rp×S p) are relatively small com-

pared to the data size (I×J). Hence, the sizes of X(p) (Kp×Lp)
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are not significantly smaller than that of Y. This leads to that

the NMD model (1) may be expensive due to a large number

of parameters to be estimated (≈ PIJ).

For spectral analysis of audio or EEG signals, an oscilla-

tion usually produces many frequencies or harmonics at the

same time and over multi channels. That means the oscil-

lation can be expressed by much smaller dimensional basis

spectral objects shifting in both time and frequency. More-

over, due to appearances in the same time intervals and fre-

quency bins, the location maps X(p) are roughly rank-one ma-

trices, or separable into much smaller matrices with a few

components. This fact gives an ability to reduce complexity

of the model (1).

Instead of solving the deconvolution (1), we consider

a low-rank blind deconvolution model to seek for a set

of P nonnegative basis objects (patterns) A(p) ∈ R
Rp×S p

+

(p = 1, 2, . . . , P), Rp ≤ I, S p ≤ J and two activating matrices

V(p) ∈ R
Kp×Mp

+ and H(p) ∈ R
Lp×Np

+ for vertical and horizontal

shiftings, I = Rp + Kp + Np − 2 and J = S p + Lp + Mp − 2,

respectively

Y ≈ Ŷ =

P∑
p=1

V(p) ∗A(p) ∗ H(p)T =

P∑
p=1

Ŷ(p)
, (2)

where Ŷ(p) = V(p) ∗ A(p) ∗ H(p)T are approximations of Y

by A(p). Pattern sizes should be much smaller than the data

size, that is, Rp � I, S p � J, and the number of activating

components 1 ≤ Mp ≤ Rp and 1 ≤ Np ≤ S p. We note

that X(p) = V(p) ∗ H(p)T are the location matrices of A(p) in

(1). However, the low-rank NMD in (2) is much cheaper than

NMD in (1) due to less fitting parameters.

In the sequel, a general framework is introduced to solve

both approximations (1) and (2). Simulations on music and

texture will confirm the validity of the proposed model.

2. RELATION WITH OTHER MODELS

When Mp = Np = 1,∀p, the low-rank NMD becomes the

rank-1 NMD. In a particular case when patterns A(p) =

a
(p)

1
a

(p)T

2
are rank-one matrices, or they consist of only one

element Rp = S p = 1, we obtain NMF from rank-1 NMD.

NMF can extract only rank-one patterns whereas NMD can

retrieve replicate high-rank structures inside a data matrix.
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This also indicates that NMD is superior to NMF in the sense

of pattern extraction although NMF has a lower complexity

than NMD. Based on the distributive law of the convolution, it

is straightforward to verify that an NMD in (1) or (2) is in fact

an NMF with much higher rank than P. Therefore, high-rank

NMF can approximate the data Y at a fitness comparable with

or even higher than NMD. However, NMF cannot incorporate

similar components which explain the same structures (such

as notes) into the same groups by itself. This characteristic is

an important advantage of NMD.

If one of the activating matrices disappears in (2), and the

other is a vector, low-rank NMD is simplified into CNMF for

horizontal shifting [1, 6, 7], or overlapping NMF (ONMF)

for vertical shifting [5]. When A(p) absorbes into V(p) or H(p),

low-rank NMD becomes CNMF2D [8]. When objects have

the same size, NMD becomes the shift invariant sparse coding

model (SCSI) for single channel [8].

We note that all existing nonnegative deconvolution mod-

els such as CNMF, ONMF, CNMF2F and SCSI use the trun-

cated convolution, and their basis patterns are of the same

size, or one of their dimensions is exactly the data size, that

is, Rp = I or S p = J,∀p. For our models including the

generalized NMD (1) and the low-rank NMD (2), patterns

can have arbitrary dimensions. This allows us to extract pat-

terns with different models in an approximation. For exam-

ple, some patterns can be rank-one matrices as in NMF, some

patterns can shift along horizontal or vertical direction of the

data (CNMF or ONMF), the others can be rank-one or low-

rank NMD. That means the low-rank NMD (2) is much more

flexible than the other existing models. Finally, NMD can

easily impose additional constraints on patterns A(p) and their

activating matrices V(p) and H(p).

3. GENERAL FRAMEWORK AND ALGORITHMS

FOR NMD

This section presents a general framework to solve NMD.

We define Toeplitz matrices T
(p)

l
∈ RI×Rp , l = 1, . . . , Lp,

p = 1, . . . , P having x̃
(p)

l
= [x

(p)T

l
01×Rp−1]T as the first col-

umn and [x
(p)

l
(1) 01×(Rp−1)] as the first row. The shift matrices

Sl are binary matrices of size J × J with ones only on the

l-th superdiagonal for l > 0, or on the l-th subdiagonal for

l < 0, and zeroes elsewhere. Note that S0 = IJ , Sl = 0J

for |l| > J and T
(p)

l
=
[
x̃

(p)

l
S̃−1 x̃

(p)

l
· · · S̃−Rp+1 x̃

(p)

l

]
, l =

1, 2, . . . , Lp, where S̃ is an I × I shift matrix. By denoting

Ã(p) =
[
A(p) 0Rp×(J−S p)

]
∈ RRp×J , the NMD (1) is rewritten as

Y =

Lp∑
l=1

T
(p)

l
Ã(p) Sl−1 +

⎛⎜⎜⎜⎜⎜⎜⎝
∑
q�p

Ŷ(q)

⎞⎟⎟⎟⎟⎟⎟⎠ + E , (3)

or

vec(Y) =

⎛⎜⎜⎜⎜⎜⎜⎝
Lp∑
l=1

(
S−l+1 ⊗ T

(p)

l

)⎞⎟⎟⎟⎟⎟⎟⎠ vec
(
Ã(p)
)
+ vec

(
Ŷ(−p) + E

)

= Z
(p)

A
vec
(
Ã(p)
)
+ vec

(
Ŷ(−p) + E

)
, (4)

where symbol “⊗” denotes the Kronecker product, E is the ap-

proximation error, and Ŷ(−p) =
∑

q�p Ŷ(q). In order to update

A(p), we fix all other parameters and minimize the following

cost function

arg min
A(p)≥0

‖Y − Ŷ‖2F = ‖ vec
(
Y − Ŷ(−p)

)
− Z

(p)

A
vec
(
Ã(p)
)
‖22. .(5)

There are plenty of methods to estimate A(p) from (5) such as

the multiplicative update rules, the ALS and recursive ALS

update rules, projected gradient methods [10]. By employing

one of them we can update A(p), ∀p. Note that A(p) ∗ X(p) =

X(p) ∗ A(p), X(p) is updated using a similar method.

For low-rank or rank-1 NMD, patterns A(p) and activat-

ing matrices V(p) and H(p) can be updated by minimizing a

similar cost function as (5). Based on the commutative and

associative laws of the convolution, the low-rank NMD (2) is

rewritten in 3 equivalent NMD forms

Y = V(p) ∗
(
A(p) ∗H(p)T

)
+ Ŷ(−p) + E = V(p) ∗ XV(p) + Ep (6)

= A(p) ∗
(
V(p) ∗H(p)T

)
+ Ep = A(p) ∗XA(p) + Ep (7)

= H(p)T ∗
(
V(p) ∗ A(p)

)
+ Ep = H(p)T ∗XH(p) + Ep. (8)

By solving similar problems as in (5) we can alternatively

update A(p), V(p) and H(p).

The following derivation is for the multiplicative algo-

rithm for low-rank NMD. By applying the multiplicative

Least-Square update rule to (5), Ã(p) (p = 1, 2, . . . , P) are

updated as follows

vec
(
Ã(p)
)
← vec

(
Ã(p)
)
�

(
Z

(p)T

A
vec(Y)

)

(
Z

(p) T

A
vec
(
Ŷ
))
,

where symbols “�”, “” denote the Hadamard product and

division. That leads to the update rules for A(p)

A(p) ← A(p)
�

⎛⎜⎜⎜⎜⎜⎜⎝
Lp∑
l=1

T
(p)T

l
YIl

⎞⎟⎟⎟⎟⎟⎟⎠ 
⎛⎜⎜⎜⎜⎜⎜⎝

Lp∑
l=1

T
(p)T

l
ŶIl

⎞⎟⎟⎟⎟⎟⎟⎠ , (9)

whereIl = [l, l+1, . . . , l+S p−1], and YIl
= [yl yl+1 . . . yl+S p−1]

is a subset of S p columns of Y with yl ≡ 0 for l ≥ J. From (6),

(7) and (8), we construct Toeplitz matrices from columns of

XV(p) = A(p) ∗H(p), XA(p) = V(p) ∗H(p)T

and XH(p) = V(p) ∗A(p),

and alternatively update A(p), V(p) and H(p), ∀p.

In the same manner, algorithms for NMD and low rank

NMD can be straightforwardly extended from ones for NMF.

For example, we can derive the recursive (Q)ALS algorithm

for NMD whose truncated version for CNMF is introduced in

[7]. Note that any algorithm for NMD can be applied to NMF,

CNMF, ONMF and CNMF2D. That means we have new mul-

tiplicative algorithms for CNMF, ONMF and CNMF2D de-

duced from (9). Although there are some existing multiplica-

tive algorithms for CNMF and ONMF [1, 3, 6], for CNMF2D

and SCSI [8, 9], the proposed algorithm with update rules (9)

is different from them in the sense of mechanism and flexibil-

ity.
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(a) Spectrogram of the original source
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(b) A rank-1 pattern for E3.
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(c) A pattern explains ringing effect for E3.
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(d) Background pattern.

Fig. 1. Waveforms and log-frequency spectrograms of the observed sequence and of 3 spectral patterns which explain stripe patterns, ringing

effect of the note E3, and background of Y.
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(a) NMF-QALS, SNR = 16.70 dB.
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(b) CNMF-QALS, SNR = 20.26 dB.

Fig. 2. Waveforms of basis sequences constructed from patterns and

their location matrices estimated by NMF, CNMF. The reconstructed

sequences (in the bottom) are summation of basis sequences.

4. EXAMPLE

4.1. Analysis of Patterns in Music

In this example, we perform decompositions for multi har-

monic frequencies played on a guitar. The sampled song

“London Bridge” is composed of five notes A3, G3, F3, E3

and D3 (sampled at frequency rate of 8 kHz in 5 seconds)

(see Chapter 3 [10]). The log-frequency spectrogram Y (364

× 151) illustrated in Fig. 1(a) was converted from the linear-

frequency spectrogram with a quality factor Q = 100 and in

the frequency range from f0 = 109.4 Hz (bin 8) to fI = fs/2 =

4000 Hz (bin 257). We note that the lowest approximation

error was 27.56 dB when there was no decomposition. Al-

gorithms were applied to extract the notes, and to explain the

observed sequence through basis audio sequences. The ap-

proximation signals were reconstructed from basis patterns,

and normalized to have the same energy as the original signal.

For CNMF and ONMF, the proposed multiplicative algorithm

(oMLS) and the oQALS algorithm which sequentially update

objects (patterns) were compared with the average multiplica-

tive LS algorithm (aMLS) [1], the simplified multiplicative

LS algorithm (MLS) [9].

As seen on Fig. 1(a), the major parts of the notes are thin

stripes each of which is composed by one spectral compo-

nent and one temporal component. However, spectrograms

of the notes not only consist of stripes, but also comprise

background patterns which are strong at low frequencies, and

weaker at higher frequencies. Moreover, boundaries of the

stripes are smeared at beginnings of notes or at transitions

between them, especially at low frequencies, for example, at

beginning of E3 around 128 Hz. NMF can extract the rank-

one parts (stripes) but cannot capture fully the notes by only

Table 1. Performance comparison for various NMDs for Examples

4.1 and 4.2.

Ex. Model Algorithm
Pattern No. SNR

P − V(p) ∗ A(p) ∗H(p)T Params. (dB)

4.1

NMF QALS
5 - (364×1) * (1×151) 2575 16.70

10 - (364×1) * (1×151) 5150 23.91

CNMF

aMLS 5 - (364×10) * (1×151) 18955 11.81

MLS 5 - (364×10) * (1×151) 18955 19.42

oMLS 5 - (364×10) * (1×142) 18910 19.13

oQALS 5 - (364×10) * (1×142) 18910 20.26

ONMF

aMLS 5 - (364×1) * (10×151) 9370 17.84

MLS 5 - (364×1) * (10×151) 9370 19.24

oQALS 5 - (355×1) * (10×151) 9325 19.90

oMLS 10 - (355×1) * (10×151) 18650 24.27

oQALS 10- (355×1) * (10×151) 18650 25.64

NMD
oMLS

5- (362×2) * (2×2) * (2×149) 5130 18.46

5- (360×3) * (3×3) * (3×147) 7650 18.74

10- (362×2) * (2×2) * (2×149) 10260 24.59

5- (10×10) * (355×142) 252550 27.27

5- (364×1) * (1×151)

5- (362×2) * (2×2) * (2×149)

1- (354×2) * (10×10) * (2×141)

2- (364×10) * (1×142)

2- (355×1) * (10×151)

20089 26.54

4.2
NMF QALS

5 - (383×1) * (1×385) 3840 25.08

10 - (383×1) * (1×185) 7690 28.03

NMD oMLS 5 - (374×1) * (10×10) * (1×376) 3400 28.09

5 components. That’s why the signal reconstructed by NMF

has a signal-to-noise ratio SNR = 16.70 dB. Waveforms of

basis and approximate sequences are shown in Fig. 2(a).

CNMF and ONMF were set to extract 5 patterns with

10 components. The results given in Table 1 indicate that

with the same number of patterns, the convolutive models

yield better approximation than NMF because they explain

the notes by more parameters. Increasing the number of com-

ponents in NMF can improve the approximation, but NMF

cannot incorporate similar components which explain the

same notes. Waveforms of basis sequences and the recon-

structed signal by oQALS for CNMF are shown in Fig. 2(b).

Signal reconstructed from 5 NMD patterns of size 2 × 2

with two activating matrices of size 362 × 2 and 149 × 2

achieved an SNR = 18.46 dB. That means low-rank NMD ex-

plains the notes better than NMF. Extracting 10 NMD patterns

of the same size (2×2) needs to estimate only 10300 parame-

ters and significantly improves the approximation signal up-to

an SNR = 24.59 dB. Note that in order to retrieve 5 patterns

of 10 columns, CNMF algorithms need to estimate 18910 pa-

rameters, while ONMF requires 9370 parameters to fit the

spectrogram. The number of parameters for ONMF will be

1895
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(b) A basis NMF image

Ŷ(p) = a(p) v(p) h(p)T .
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(c) Basis NMD patterns
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(d) Basis images Ŷ(p) = v(p) ∗ A(p) ∗ h(p)T by rank-1 NMD

Fig. 3. Pattern extraction from “Cloth7” for Example 4.2.

dramatically increased for analysis of longer sequences.

An approximation by full NMD with 5 patterns A(p) ∈

R
10×10
+ and 5 X(p) ∈ R355×142

+ achieved a perfect reconstruc-

tion with SNR = 27.27 dB. However, this deconvolution is

extremely expensive due to estimation of 252.550 parameters.

An extra simulation illustrates the flexibility of NMD. The

major parts of the notes are rank-1 matrices (stripes). Ringing

effects near the note boundaries can be modelled by relatively

small patterns which shift along both directions (time and fre-

quency) of the spectrogram. The background can be modelled

by larger patterns such as tall patterns covering the whole fre-

quency band and shifting along the time axis, or long patterns

shifting along the frequency axis. As a result, we decomposed

Y into 5 rank-one patterns (NMF), 5 low-rank patterns of size

2× 2, 1 pattern of size 10× 10, 2 tall patterns of size 364× 10

and 2 long patterns of size 151 × 10. This produced a nearly

optimal reconstruction with SNR = 26.54 dB from 20089 ar-

guments. The rank-1 spectrogram of the note E3 shown in

Fig. 1(b) is composed by a spectral component and a tempo-

ral component, where the ringing parts appear at beginning

of E3 illustrated in Fig. 1(c) is constructed from a 2 × 2 pat-

tern and two rank-2 activating matrices. Fig. 1(d) illustrates

background of Y composed by a tall pattern of size 364× 10.

4.2. Texture Decomposition

In this example, NMD was applied to seek for basis com-

plex (high-rank) patterns inside textures. The observed RGB

texture “Cloth7” of size 383 × 385 was taken from the li-

brary http://textures.forrest.cz/index.php?spgmGal=

fabric&spgmPic=9. We considered only the luminance com-

ponent shown in Fig.3(a). The texture comprises small diag-

onal structural patterns, and flat regions in the center. NMF

can explain the texture by basis images each of which is com-

posed by a vertical component and a horizontal component.

Fig. 3(b) illustrates one of basis rank-1 images obtained by

NMF with 5 components. It is clear that NMF cannot retrieve

diagonal patterns because they are not rank-1 matrices in spite

of being simple structures. By applying rank-1 NMD with

P = 5 patterns A(p) ∈ R10×10
+ and v(p) ∈ R374

+ and h(p) ∈ R376
+ ,

we can obtain the diagonal patterns as illustrated in Fig. 3(c).

Some basis images Ŷ(p) shown in Fig. 3(d) intuitively reveal

replication of patterns. Comparison between NMF and rank-

1 NMD for this texture is given in Table 1. Increasing the

number of NMF components can improve the approximation

but we cannot obtain complex patterns by NMF.

5. CONCLUSIONS

New blind deconvolution model has been proposed to seek

for patterns inside nonnegative data matrices. Patterns can

have arbitrary sizes, and can shift independently in the data.

Moreover, NMD and low-rank NMD allow multiple models

in an approximation. That means our models are much more

flexible than the existing convolutive models. The paper also

presented a general approach to estimate basis patterns and

the location matrices in NMD. As a result, we can convey an

arbitrary NMF update rules into the new model. In addition, a

simple multiplicative algorithm has been introduced to verify

the proposed approach. The experimental results have con-

firmed the validity of our model and of our algorithms for both

music and texture deconvolution. Especially, the proposed al-

gorithms outperformed other multiplicative algorithms for the

same model.
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