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ABSTRACT1

Complex blind source separation (BSS) received growing 
interests in many practical applications in the past decades,
and non-orthogonal joint diagonalization (JD) of a set of 
complex matrices plays an instrumental role in solving these 
problems. In this paper, we propose a new complex non-
orthogonal JD algorithm. This algorithm successively finds 
the optimal Givens and hyperbolic rotation matrices that 
constitute the elementary rotation matrix in each iteration in 
an alternating manner. It does not require the target matrices 
to be Hermitian, and thus could be well adapted to BSS 
problems that involve fourth-order cumulant slices or time-
lagged covariance matrices. Simulations are provided to 
compare the proposed algorithm with other JD algorithms.

Index Terms — Blind source separation, Complex non-
orthogonal joint diagonalization, Givens, Hyperbolic

1. INTRODUCTION

Blind source separation (BSS) aims at separating sources 
from their mixtures with no prior knowledge on the mixing 
process and sources other than some practical assumptions
(e.g. the source independence). The early BSS works are 
mainly based on real-valued algorithms, while in the past 
decades, complex BSS [1, 8] has attracted growing interests as 
the need for complex signal processing increases.

Many BSS methods undergo a joint diagonalization (JD) 
step upon a set of matrices 1{ ,..., }KM M , for the blind 
identification of the mixing matrix. More exactly, the target 
matrices are usually established as fourth-order cumulant 
slices [1] or time-lagged covariance matrices[2], that share the 
following JD structure by assuming source uncorrelation as 
well as non-stationarity, or source independence:

H
k kM AD A (1)
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where kD is the kth diagonal matrix and A is the mixing 
matrix. The superscript ‘ H ’ denotes conjugated transpose. 
As a result, fitting this JD structure yields the estimate of A .

There are enormous JD algorithms in the open literature. 
The early ones, such as Cardoso’s Jacobi-like method [1], are 
usually designed for unitary matrices, and thus prewhitening 
must be added to orthogonalize the target matrices. However, 
prewhitening is always approximate due to the estimation 
errors for the target matrices, and these errors could not be 
corrected in the JD stage that follows [3]. As a result, the 
non-orthogonal schemes without prewhitening have been 
widely advocated [4-12]. These algorithms are usually of 
iterative type, aiming at minimizing certain cost functions 
that measure the fitting of the JD structure. To name a few, 
the weighted least squares (WLS) criterion is used in [4-7]
and JD is formulated as a set of subspace fitting problems. 
The work in [8] uses information theoretic criterion for JD 
of positive definite matrices. Minimization of the sum of off-
diagonal squared norms is also widely adapted [1, 9-12].

Among the afore-mentioned JD algorithms, those using 
successive rotations are of a particular kind [1, 10-12]. These 
methods often use parameterized elementary rotation matrix 
in each iteration to update the estimate of the mixing matrix,
and thus it is only needed to find several optimal parameters 
in each iteration. As such, these methods are often of closed-
form in each iteration and could provide stable solutions that 
are insensitive to initializations. The orthogonal JD using
Givens rotations is addressed in [1], while the works in [10-
12] extend the idea of [1] to the non-orthogonal context by 
factorizing the elementary rotation matrix for each iteration 
into the product of Givens rotation matrix and one 
symmetric non-unitary matrix (hyperbolic rotation [10, 11] or 
triangular matrix [12]). However, [10-12] only considered the 
real-valued case, and could not be adopted in practical 
applications that involve complex non-orthogonal JD.

In this paper, we extend the methodology that adopts
successive Givens and hyperbolic rotations [10, 11] to the 
complex domain.We note that this extension is not trivial as 
it involves optimization over more parameters than the real-
valued case. In the rest of the paper, section 2 presents the 
proposed algorithm, which is compared with other methods 
via simulations in section 3. Section 4 concludes this paper.
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2. THE PROPOSED ALGORITHM

We assume a set of complex-valued square matrices 
1 2{ , ,..., }KM M M share the JD structure as given in (1). The 

mixing matrix A is square and full rank, and A , kM , kD
are of size N N . Instead of using for JD, we use a
new matrix set formed by augmenting as:

1 1 2{ ,..., , ,..., }K K KM M M M , where H
K l lM M for l

1,2,..., K . Denoting 1
2

,off( ) | |i j N i jpP for CN NP ,
we propose to tackle the JD problem by minimizing the sum 
of off-diagonal squared norms as follows:

2 1
1

arg min off( )K H
kkA

A A M A (2)

In successive rotation based algorithms, the estimates for A
and kM are updated with elementary rotation matrix ( , )i jT
for each index pair ( , )i j , 1 i j N , as follows:

, ( , ) , ( , ) ( , ),H H
k new i j k old i j new old i jM T M T A A T (3)

where ,k newM and newA denote the updates of kM and A in 
the current iteration, and ,k oldM and oldA denote the results 
obtained in the previous iteration, 1,..., 2k K . ( , )i jT equals
the identity matrix except the entries indexed ( , )i i , ( , )i j ,
( , )j i , and ( , )j j . The goal is then to find an optimal ( , )i jT
to minimize 2

1 ,off( )K

k k newM for each iteration.
We note that any complex non-singular matrix could be 

factorized into the product of a Hermitian matrix and a 
unitary matrix, and thus ( , )i jT could be rewritten as ( , )i jT

, ,ij ij ij ijH G , with ,ij ijG being the unitary Givens rotation 
matrix, and ,ij ijH the Hermitian hyperbolic rotation matrix:
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(4)

where ‘ i ’ is the imaginary unit, ‘ cosh ’ denotes hyperbolic 
cosine and ‘ sinh ’ denotes hyperbolic sine. As a result, the 
problem now amounts to finding optimal parameters ij , ij ,

ij , ij in each iteration to minimize 2
,1off( )K

k newk M .
Noting that it might be difficult to find all the parameters
simultaneously, we adopt the following alternating scheme 
in each iteration:

2
, ,1,

{ , } arg min off( )ij ij ij ij
ij ij

K H
ij ijk k

G M G (5.a)

2
, , ,1,

{ , } arg min off( )ij ij ij ij
ij ij

K H
ij ijk new k

H N H (5.b)

where , , ,ij ij ij ij

H
k new kN G M G . Moreover, as (5.a) could be 

solved via Cardoso’s Jacobi-like algorithm [1], the problem 
now amounts to solving (5.b). 

As indicated in (5.b), all the off-diagonal elements are 
involved in finding the optimal hyperbolic rotation matrix. 
However, considering all the off-diagonal elements would 
result in a difficult minimization problem and thus we
propose to approximate , , ,off( )ij ij ij ij

H
k newH N H in (5.b) by 

considering only two specific off-diagonal elements: the 
elements indexed ( , )i j and ( , )j i in , , ,ij ij ij ij

H
k newH N H .

The reason for doing so is that the (i,j)th and (j,i)th elements 
are twice affected by ,ij ijH , and thus contribute the most to 
the changes on the sum of off-diagonal squared norms [10, 11].
Hence, (5.b) is approximated as:

2 2
, , , ,1,

2
, , , ,

{ , } arg min | ( ) |

| ( ) |

ij ij ij ij
ij ij

ij ij ij ij

K H
ij ijk new i j k

H
k new j i

H N H

H N H
(6)

We denote the elements indexed ( , )i j in , , ,ij ij ij ij
H

k newH N H
and ,k newN as ,( , )k i jm and ,( , )k i jn , respectively, and 

2 2 2 22
,( , ) ,( , ) ,( , ) ,( , )12 (| | | | | | | | )K

k i j k j i k i j k j ik m m n n , then the 
minimization problem in (6) is equal to minimizing as 

2 2
,( , ) ,( , )| | | |k i j k j in n could be considered as a constant. In 

addition, we further rewrite as:
2 2 * *

,( , ) ,( , ) ,( , ) ,( , )1 1

* *
,( , ) ,( , ) ,( , ) ,( , )

2 2 [( )( )

                    ( )( )]

K K
k k i j k i j k i j k i jk k

k j i k j i k j i k j i

m n m n

m n m n
(7)

where * * * * *
,( , ) ,( , ) ,( , ) ,( , ) ,( , ) ,( , ) ,( , ) ,( , )k k i j k i j k i j k i j k j i k j i k j i k j im n n m m n n m .

We note that *
,( , ) ,( , )k i j k K j im m , and *

,( , ) ,( , )k i j k K j in n . As a 
result, 0k k K and the first term of (7) vanishes. By 
further denoting *

,( , ) ,( , )k k i j k K j im m m , and ,( , )k k i jn n
*

,( , )k K j in , (7) could be rewritten as: 

2 i 2 i

1
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(8)

As i2
,( , ) ,( , )cosh e sinh cosh ( )ij

k ij k ij ij k i i k j jm n n n
2 i 2e sinhij

ij kn , where ,( , )k i in and ,( , )k j jn are the ith and jth
diagonal elements of ,k newN , respectively, the second term 
on the right side of (8) is equal to 24 | |kn . Therefore, the 
problem given in (6) is reduced to the minimization of 

2 i 2 i
1[ e ( )][ e ( )]ij ijK

k k k k k k k kk m n m n m n m n . In 
addition, forming a vector CKy with its kth entry: ky

2 i[ e ( )]ij
k k k km n m n , we have Hy y . As a result,

substituting km into y yields the following:

i1,( , ) 1,( , ) 1 1

2 i2,( , ) 2,( , ) 2 2
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ij

i i j j
ij

i i j j
ij

ij
K i i K j j K K

n n n n
n n n n

n n n n
xW

y (9)

Further noting that 1Hx Jx , with 1 1 1
2 4 4diag( , , )J ,

where ‘diag’ makes a diagonal matrix with given inputs, we 
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could obtain the optimal vector x by solving the following 
constrained minimization problem:

arg min

. .          1

H H

Hs t
x

x x W Wx

x Jx
(10)

which can be solved using the Lagrange multipliers strategy. 
More exactly, by constructing a cost function incorporating 
the equality constraint as ( 1)H H Hh x x W Wx x Jx ,
and letting its derivative with regards to x equal zero, we 
have HW Wx Jx , which indicates that x could be 
obtained as the generalized eigenvector of matrix pencil 
( , )HW W J associated with the smallest eigenvalue. Hence,
the optimal hyperbolic rotation angles could be obtained as: 

i

cosh (3)/2

e sinh (1)/2coshij

ij

ij ij

x

x
(11)

We note that the proposed complex non-orthogonal JD 
(CNJD) does not require the target matrices to be Hermitian.
Moreover, we stop the iterations of CNJD when min( , )ij ij

is smaller than threshold . CNJD is summarized as follows:
Input: A set of square N N matrices 1{ ,..., ,KM M

1 2,..., }K KM M , H
K l lM M , 1,...,l K , and a threshold 

Output: The mixing matrix estimate A
Implementation: 

NA I
while max(| sinh |,| sin |)ij ij do

for all 1 i j N do
- Obtain optimal Givens angles ,ij ij via the Jacobi-like 

algorithm [1] and the Givens rotation matrix ,ij ijG by (4)
for 1k to 2K do , ,ij ij ij ij

H
k kN G M G end for

- Compute the eigenvector x of 1 1 1
2 4 4( ,diag( , , ))HW W

of the smallest eigenvalue, where W is obtained by (9).
if (3) 0x then x x end if
cosh (3) 2ij/ x , ie sinh (1) 2coshij

ij ij/ x . Obtain 
the hyperbolic rotation matrix ,ij ijH by (4)

- for 1k to K do
, , ( , ) , , ( , ), ,ij ij ij ij ij ij ij ij

H H
k k i j i jM H N H T H G A AT

end for
end for

end while

3. SIMULATIONS

We assume three far-field narrow band signals impinge upon 
a uniform linear array of three sensors with spacing equaling 
half the wavelength of incidences. The sensor signals can be 
modeled as: 3

1( ) ( ) ( ) ( )m mmt s t tx a n , where ( )ma
i sin i2 sin[1,e ,e ]m m is the mth mixing vector, ( )ms t is the 

mth source, and ( )tn is the noise [2]. The impinging angles 
of sources are 1 40 , 2 80 and 3 12 , respectively.
As a result, JD over fourth-order or second-order cumulant 
matrices could be used to identify the mixing vectors blindly.

The proposed CNJD method is compared with Cardoso’s
Jacobi-like orthogonal JD (OJD) [1], Li’s fast approximate 

JD (FAJD) [5], Tichavsky and Yeredor’s uniformly weighted 
exhaustive diagonalization by Gaussian iteration (UWEDGE)
[6], and Vollgraf’s quadratic optimization for approximate
matrix diagonalization (QDIAG) [7]. In addition, we perform 
prewhitening for OJD due to its orthogonal nature, and use 
uniform weights for FAJD, UWEDGE, and QDIAG. The 
positive definite matrix demanded by QDIAG is the identity 
matrix. We note that using properly designed non-uniform 
weights may improve the performance of these algorithms, 
which is out of the scope of this paper. In addition, OJD and 
CNJD are initialized with identity matrix, while UWEDGE 
and FAJD use conventional OJD outputs as initial guesses.
The average interference-to-signal ratio [4] (ISR) is used to 
measure the accuracy of the estimates of the mixing matrix2

1
1010log ( )sSNR p p

.
The signal-to-noise ratio (SNR) is ,
where sp is the signal power and p is the noise power.

In the first simulation, we consider BSS based on JD of 
fourth-order cumulant slices. The incidences are assumed to 
be random phase signals, and the noise is Gaussian white. 
The entire set of fourth-order cumulant matrices are used for 
CNJD, FAJD, UWEDGE, and QDIAG. Yet the scheme to 
extract principle eigenmatrices [1] is adopted for OJD.

We fix the number of snapshots to 1000, let SNR vary 
from 0~10dB, and plot the average ISR curves against SNR 
in Figure 1.(a). Then we fix SNR to 5dB and let the number 
of snapshots vary from 200 ~ 2000. The average ISR curves 
against the number of snapshots are plotted in Figure 1.(b). 
The results are obtained from 100 Monte-Carlo runs.

(a) Average ISR versus SNR, the number of snapshots is 1000

(b) Average ISR versus the number of snapshots, SNR is 5dB
Figure 1. Comparison of CNJD, OJD, FAJD, UWEDGE, and 
QDIAG in BSS based on fourth-order cumulants

Figure 1 demonstrates that OJD generally underperforms 
non-orthogonal JD. Moreover, the proposed CNJD method
yields the most precise estimates of the mixing matrix, and 

2 Define 1P A A , where A and A are the estimated and true
mixing matrices, respectively, then ISR for each row of P is the 
sum of squares of all the elements except the largest, divided by 
the square of the largest one in that row. The average ISR is the 
average of ISR’s for all rows.
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thus is able to provide improved robustness to the errors
caused by noise and finite sampling in the context of fourth-
order BSS than other JD algorithms.

In the second simulation, we consider second-order BSS 
that fulfills blind identification of the mixing matrix by JD of
time-lagged covariance matrices: 1

,
H

k l k lFR X X , where 
kX is the kth time-lagged frame of the array signal: kX

[ (( 1)(1 ) 1),..., ( 1)(1 ) )]k F kF Fx x , F is the 
frame length, and 0 1 is the overlapping factor [8].

We assume the three sources are uncorrelated signals of 
different spectra obtained by filtering random phase signals 
by AR models of order 1 with coefficients 3i

1 0.85e ,
6i

2 0.85e , and 2
3i

3 0.85e . The noise is Gaussian 
white. The principle eigenmatrices [1] obtained from the 
entire set of time-lagged covariance matrices are used for all 
the compared algorithms as target matrices. We fix the 
number of snapshots to 1000T , set the overlapping factor 

0.75 , the frame length 100F , and let SNR vary from 
-5dB ~ 5dB. The average ISR curves versus SNR are plotted 
in Figure 2.(a). Then we fix SNR to 0dB, set the frame 
length 110-F T , let T vary from 100 ~ 1000, and plot the 
average ISR curves versus the number of snapshots in Figure
2.(b). The results are obtained from 100 Monte-Carlo runs.

(a) Average ISR versus SNR, the number of snapshots is 1000

(b) Average ISR versus the number of snapshots, SNR is 0dB
Figure 2. Comparison of CNJD, JADE, FAJD, UWEDGE, and 
QDIAG in BSS based on fourth-order cumulants

Figure 2.(a) shows that CNJD provides close accuracy to
FAJD and UWEDGE, which is superior to OJD for low 
SNR (-5dB ~ -3dB) and to QDIAG when SNR exceeds 0dB.
For fixed SNR, Figure 2.(b) shows that CNJD performs 
closely to FAJD and OJD for short data, while approaches 
UWEDGE as the number of snapshots increases. Moreover, 
CNJD, OJD, FAJD, and UWEDGE outperforms QDIAG in 
the presence of the errors introduced by short data length.

4. CONCLUSION

This paper presents a new complex non-orthogonal joint 
diagonalization algorithm (CNJD) using successive rotations, 
where the elementary rotation matrix in each iteration is 

obtained from alternatively updated Givens and hyperbolic 
rotations. This algorithm does not require the target matrices 
be Hermitian and thus could be used in complex BSS 
applications that involve time-lagged covariance matrices or 
fourth-order cumulant slices. Simulations show that CNJD is 
able to provide more accurate estimates of the mixing matrix 
for fourth-order BSS, and almost equally accurate estimates 
of the mixing matrix for second-order BSS, compared with 
other complex joint diagonalization algorithms.
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