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ABSTRACT

Matrix optimization of cost functions is a common problem.

Construction of methods that enable each row or column to

be individually optimized, i.e., decoupled, are desirable for

a number of reasons. With proper decoupling, the conver-

gence characteristics such as local stability can be improved.

Decoupling can enable density matching in applications such

as independent component analysis (ICA). Lastly, efficient

Newton algorithms become tractable after decoupling. The

most common method for decoupling rows is to reduce the

optimization space to orthogonal matrices. Such restrictions

can degrade performance. We present a decoupling proce-

dure that uses standard vector optimization procedures while

still admitting nonorthogonal solutions. We utilize the decou-

pling procedure to develop a new decoupled ICA algorithm

that uses Newton optimization enabling superior performance

when the sample size is limited.

Index Terms— Independent component analysis (ICA),

blind source separation (BSS), matrix optimization

1. INTRODUCTION

Optimization of cost functions with matrix parameters can oc-

cur in many domains, such as signal processing and data min-

ing. The optimization is frequently limited to the set of full

row rank matrices. Additionally, sometimes it is sufficient to

consider a subset of this optimization space, namely the set of

orthonormal matrices. Doing so allows the cost function to be

decomposed in a manner that lets each row or column of the

matrix to be optimized independently using standard vector

optimization procedures. However, the subset of orthonormal

matrices might be too restrictive.

In this paper, we consider an alternative optimization pro-

cedure that permits optimization over the broader class of

nonorthogonal matrices. The complexity associated with ma-

trix optimization is avoided, allowing each row to be treated

independently during its optimization. Furthermore, the de-

coupling enables the development of Newton optimization al-

gorithms.

This work is supported by the NSF grants NSF-III 1017718 and NSF-

CIF 1117056.

We begin by providing some background on the maxi-

mum likelihood approach to ICA, as it provides a primary ex-

ample of the matrix optimization problem of interest. In Sec-

tion 3, the method for decoupling each row of a nonorthogo-

nal matrix optimization parameter is described. Then, we ap-

ply this decoupling approach to introduce the decoupled ICA

(D-ICA) algorithm. Lastly, we compare using simulations the

performance of D-ICA with several existing ICA algorithms.

2. BACKGROUND AND MOTIVATION FOR
DECOUPLED LEARNING

In a number of problems, one has to perform optimization

with respect to a matrix parameter using iterative optimiza-

tion techniques. This is especially the case in approaches in

latent variable analysis such as ICA and nonnegative matrix

factorization (NMF). Without loss of generality, the develop-

ment here is based on maximum likelihood ICA. Extensions

to other problems, especially to NMF and other blind source

separation (BSS) problems is quite straightforward.

In BSS problems an N dimensional observation vector,

x (t) is observed T times. The sources can be blindly identi-

fied upto a scaling and permutation ambiguity via ICA when

a noiseless instantaneous linear mixing model of independent

sources is valid. Throughout we assume that the samples of

x (t) are independently and identically distributed (i.i.d.) and

the sample index, t, is henceforth suppressed. Specifically,

ICA requires x = As, where the square, N ×N mixing ma-

trix, A, must be invertible and the source vector components

are statistically independent so that the joint probability dis-

tribution function (pdf) of the source vector s can be factored

as a product of marginal pdfs, i.e., p (s) = p (s1) · . . . ·p (sN ).
In order for all the sources to be identified via ICA, at most

one source can be normally distributed. In ICA, the estimates

of the source vector are obtained by y = Wx, where W is

an estimate of the “demixing” matrix.

One principled ICA approach is to minimize the mutual

information of the estimated source components as expressed

in the following cost function,

JICA1 =

N∑
n=1

H [yn]− log|det (W)| − C1, (1)
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whereH [yn] is the (differential) entropy of the nth estimated

source, and the entropy of the observationsH [x] is a constant

with respect to (w.r.t.) W, denoted by C1.

There are several interesting properties of the ICA cost

function given in (1). First, note that it is equivalent to maxi-

mum likelihood estimation [1]. The role of the log|det (W)|
portion of the cost function is to act as a regularization term.

Since entropy is not scale invariant, i.e., H [z] �= H [az] for

a �= 1, then without the regularization term the cost func-

tion could be minimized by scaling the estimated sources. A

simplification of the cost function can be had by restricting

the set of permissible demixing matrices to those that achieve

the following necessary condition for estimating indepen-

dent sources, namely requiring that the estimated sources are

second-order uncorrelated, or E [yyT
]
= D, where D is a

full rank diagonal matrix. This necessary condition strictly

holds as T → ∞, and is achieved by a whitening matrix, U,

such that E [zzT ] = I, where z = Ux. The set of all demix-

ing matrices which meet this second-order requirement can

then be expressed as W = VU, where V is an orthonormal

matrix to be estimated via optimization of this simplified ICA

cost function,

JICA2
=

N∑
n=1

H [yn]− C2 − C1. (2)

We have used C2 � log|det (W)|, since this is now a con-

stant w.r.t. the orthogonal optimization parameter V. It

should be clear that prewhitening data using U does not

make (1) and (2) equivalent. Data can be whitened prior to

using (1) but the data must be whitened to use (2). In the

above and throughout the remainder of the paper, we restrict

our discussion to the real domain and note that similar results

can be achieved with proper analysis for the complex domain.

The more restrictive cost function given in (2) is widely

used as it allows the estimation of each source component

using standard vector optimization procedures. If T is not

sufficiently large then the accuracy of the whitening matrix,

U, is degraded and the restriction on decomposing W as the

product of an orthogonal matrix and a whitening matrix may

degrade source estimation performance. This is the primary

motivation for considering the more general cost function of

(1) rather than the simpler cost function of (2). For simplic-

ity, we will refer to (1) and (2) as the nonorthogonal and or-

thogonal ICA cost functions, respectively. Similarly, orthog-

onal/nonorthogonal cost functions exist in other optimization

problems; ICA only serves as one convenient example.

3. DECOUPLING PROCEDURE

A useful decoupling for some matrix optimization problems

is first introduced in [2] for designing an approximate joint

diagonalization algorithm. Variants of this decoupling proce-

dure have been subsequently used in [3, 4] for designing ICA

algorithms and in [5] for designing joint blind source separa-

tion (JBSS) algorithms. Here we present a distinct derivation

of this decoupling “trick” using basic linear algebra. The de-

coupling procedure can be applied to cost functions that are

optimized over the set of full row-rank matrices and have a

regularization term based on
√

det (WWT ). For full-rank

matrices this is equivalent to |det (W)|.
Let the matrix to be estimated be expressed in terms of

vectors, W = [w1 . . .wM ]
T ∈ R

M×N , where M ≤ N .

We wish to decouple the estimation of each row in W, wT
m,

1 ≤ m ≤M . To do so, we will denote the other M−1 rows in

W as W̃m = [w1 . . .wm−1wm+1 . . .wM ]
T ∈ R

(M−1)×N .

By using a permutation matrix, Pm,M , we can exchange the

mth and M th rows of W using Pm,MW. This enables us

to use the determinant of partitioned matrices given in [6] to

write

det
(
WWT

)
= det

(
Pm,MWWTPT

m,M

)
= det

([
W̃m

wT
m

] [
W̃T

m wm

])

= det
(
W̃mW̃T

m

)
wT

mH̃mwm, (3)

where H̃m � I − W̃T
m

(
W̃mW̃T

m

)−1

W̃m ∈ R
N×N . Note

that wT
mH̃mwm is the Schur complement of W̃mW̃T

m in

WWT .

Recall from linear algebra that the least squares solution

to Ax = b ∈ R
q , where A ∈ R

q×r has full column rank

and r ≤ q, can be solved using the normal system of equa-

tions, ATAx = ATb, or x =
(
ATA

)−1
ATb. Thus the

projection vector, p � Ax = A
(
ATA

)−1
ATb, makes it

clear that A
(
ATA

)−1
AT is a projection matrix that maps

vectors onto the column space of A. Orthonormal projection

matrices possess many useful properties, one of which is the

orthogonal complement, i.e., the null space of A is given by

I−A
(
ATA

)−1
AT .

With the recollection above, it is clear that H̃m is an or-

thogonal complement projection matrix for the space spanned

by the rows of W̃m. Due to space considerations, we now

consider the most common case when M = N , i.e., W is

invertible, then by the chosen decomposition of W, we have

that H̃m is a rank one matrix. More explicitly, H̃m = hmhT
m,

where hm ∈ R
N×1 and ‖hm‖ = 1 due to the requirement

that orthonormal projections matrices have eigenvalues of 1

or 0 only. To clarify, hm is any vector such that W̃mhm =
0 ∈ R

(N−1)×1.

Expressing the desired quantity,
√
det (WWT ), when

M = N , in terms of the result above in (3) we have√
det (WWT ) =

√
det
(
W̃mW̃T

m

)
|wT

mhm|. (4)

A geometric interpretation of (4) is to consider the left hand

side as a volumetric term so that the first term on the right
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hand side is an ‘area’ term associated with the submatrix W̃m

and the last term gives a ‘height’ measure.

Using the result above one can readily compute deriva-

tives of
√
det (WWT ) w.r.t. each row wm. It is actually

more convenient for our purposes to compute the derivative

of log
√

det (WWT ),

∂ log
√
det (WWT )

∂wm
=

hm

wT
mhm

, (5)

and the associated Hessian is

∂2 log
√
det (WWT )

∂wm∂wT
m

=
−1

(wT
mhm)

2 H̃m. (6)

The difference between the original derivation and use of

[2] with the decoupling presented here is that the former used

a 2× 2 block matrix decomposition of W rather than the es-

sentially 2 × 1 block matrix decomposition used here. Addi-

tionally, with the presented decoupling derivation, the origin

of the vector hn is clear and consistent with the decoupling

used in [3, 4, 5].

4. DECOUPLED MAXIMUM LIKELIHOOD ICA

In this section, we use the decoupling procedure derived in

Section 3 to develop a new decoupled maximum likelihood

ICA algorithm. To do so, we use the more general ICA cost

function given in (1), whose minimization corresponds to

minimizing the mutual information of the estimated com-

ponents. The demixing matrix estimate can be optimized

by minimizing the cost function using either gradient or

Newton-based optimization methods. Previous optimization

approaches compute the derivative of (1) w.r.t. the entire

demixing matrix. To achieve faster convergence and to avoid

computing the inverse of the demixing matrix the natural (rel-

ative) gradient algorithm can be used [7]. Although Newton

optimization procedures for updating the demixing matrix

are theoretically possible, they are generally not practical for

moderate to large values of N because the dimension of the

Hessian grows as N2. Here, we achieve a Newton-based

algorithm by using the decoupling procedure.

The gradient of the ICA cost function (1) w.r.t. the nth

row of W is

∂JICA1

∂wn
= E [φ (yn)x]− hn

wT
nhn

, (7)

where we have applied the chain rule and used φ (yn) to

denote the scalar quantity −d log p (yn) /dyn, sometimes

termed the score function. For a Newton update, the Hessian

can be computed using

∂2JICA1

∂wn∂wT
n

= E [φ′ (yn)xxT
]
+

1

(wT
nhn)

2 H̃n, (8)

where φ′ (yn) = dφ (yn) /dyn is defined provided pdf is

twice differentiable. Given such a score function, a Newton

update of the nth demixing vector is

wn,new ← wn,old − μ

(
∂2JICA1

∂wn∂wT
n

)−1
∂JICA1

∂wn
, (9)

where μ > 0 is a step-size parameter, which is one for a truly

Newton algorithm but its value can be adjusted to control the

convergence speed.

The computations required to compute the Hessian di-

rectly as expressed in (8) and the Hessian inverse as required

in (9) are potentially computationally burdensome. To re-

duce the computational operations required to iteratively up-

date wn we consider prewhitened data. Then a simplifying

assumption, E [φ′ (yn)xxT
] ≈ E [φ′ (yn)] I, used in [8] to

derive the FastICA algorithm can be considered. Using this

simplification provides the following Hessian approximation,

∂2JICA1

∂wn∂wT
n

≈ E [φ′ (yn)] I+
1

(wT
nhn)

2 H̃n. (10)

Furthermore, by the matrix inversion lemma [6], we have the

following expression for the Hessian inverse,

(
∂2JICA1

∂wn∂wT
n

)−1

≈
(
E [φ′ (yn)] I+

1

(wT
nhn)

2 H̃n

)−1

= γnI− γ2
n

αn + γn
H̃n, (11)

where γ−1
n � E [φ′ (yn)] and αn �

(
wT

nhn

)2
. Using the

approximation for the Hessian inverse of (11) in (9), we have

the following computationally efficient quasi-Newton update

rule for D-ICA

wn,new ← wn,old − μ

(
γnI− γ2

n

αn + γn
H̃n

)
∂JICA1

∂wn
. (12)

4.1. Algorithm Details

In the previous subsection, the two fundamental update equa-

tions for D-ICA are given in (9) and (12). In this subsection,

we provide implementation details.

A prudent practice is to initialize nonorthogonal algo-

rithms with solutions from (faster) orthogonal algorithms.

For this paper, we have chosen to use the solution of the

popular orthogonal FastICA [8] to initialize the estimate of

the demixing matrix. By doing so, the nonorthogonal D-ICA

algorithm refines the orthogonal FastICA solution so that

only a few iterations by D-ICA are necessary to converge.

Thus concerns about the additional computational cost of the

decoupling procedure can be reduced considerably. Addition-

ally, a fast recursive method for computing hn can be used

[4].
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In each iteration, all the rows of the demixing matrix are

updated using (12). After each update the demixing row vec-

tors are normalized to have unit length. As the algorithm

converges measures of changes in the demixing vector esti-

mates between iterations, such as θn � 1 − |wT
n,oldwn,new|,

become very small. We deem that convergence is achieved

when max (θ1, . . . , θN ) < ε, where ε is a small positive num-

ber with a typical value of 10−6. The quasi-Newton update

of (12) is used until the last iteration, which uses the more

computationally expensive Newton update of (9). For both

the exact and quasi-Newton update rules we have used μ = 1
for the step-size parameter.

Lastly, to implement D-ICA we specify an a priori distri-

bution, namely a member of the inverse-cosh family of distri-

butions, p (y) ∝ 1/ cosh1/β (βy). In particular, we let β =
1/2, then φ (y) = tanh (y/2) and φ′ (y) =

(
1− φ2 (y)

)
/2.

4.2. Algorithm Performance

To demonstrate the performance, we simulate sources as i.i.d.

samples of the inverse-cosh distribution described above. For

comparison, we compare the performance of D-ICA with Fas-

tICA and Infomax [9]. Both Infomax and D-ICA use the

symmetric FastICA solution for initialization. All three al-

gorithms are using the same source density matching tangent

hyperbolic score function. To compare performance we con-

sider the normalized inter-symbol-interference (ISI) metric

[10, 11]:

ISI (G) � 1

2N (N − 1)

[
N∑

n=1

(
N∑

m=1

|gn,m|
maxp|gn,p| − 1

)
+

N∑
m=1

(
N∑

n=1

|gn,m|
maxp|gp,m| − 1

)]
,

where G � WA and gm,n is the mth and nth element of G.

In each experiment, the elements of the mixing matrix are

drawn from the standard normal distribution. The average

normalized ISI of 50 trials for various number of sources and

sample sizes are shown in Fig. 1. For this example, the D-ICA

algorithm provides equal or better performance than FastICA

and Infomax for all experimental settings and provides the

largest benefit when the sample size is small.

5. CONCLUSIONS

The ability to decouple the rows of nonorthogonal matrix op-

timization parameters can be preferred to the more restric-

tive orthogonal decoupling. The benefits of decoupling can

be exhibited in terms of simplified algorithm design and im-

proved optimization performance as demonstrated here. Ad-

ditionally, decoupling enables density matching for ICA al-

gorithms.
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Fig. 1. Average normalized ISI of 50 trials for 200, 400, 800,

and 1000 samples versus number of sources.
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