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ABSTRACT

Bounded Component Analysis (BCA) has recently been in-

troduced as an alternative method for the Blind Source Sep-

aration problem. Under the generic assumption on source

boundedness, BCA provides a flexible framework for the sep-

aration of dependent (even correlated) as well as independent

sources. This article provides a family of algorithms derived

based on the geometric picture implied by the founding as-

sumptions of the BCA approach. We also provide a numerical

example demonstrating the ability of the proposed algorithms

to separate mixtures of some dependent sources.

Index Terms— Blind Source Separation, Bounded Com-

ponent Analysis, Independent Component Analysis, Depen-

dent Component Analysis

1. INTRODUCTION

Blind Source Separation is a well-known subject in signal

processing (see for example [1] and the references therein).

It is the central problem for a diverse set of applications rang-

ing from MIMO communications to brain activity monitor-

ing, and to even non-engineering applications such as finan-

cial factor analysis.

Various BSS approaches have been proposed to extract

original sources from their mixtures. The hardship caused

by the lack of training information and the knowledge about

the mixing system is overcome by the additional assumptions

made by these approaches. Among these, the assumption

about the statistical independence of sources stands out as

probably the most popular and the most successful choice.

Although the corresponding Independent Component Analy-

sis (ICA) algorithms have been used in various applications,

the assumption of independence may not hold depending on

the data model.

Recently, in [2], it was shown that if the source distri-

butions have finite support lengths, then the independence

assumption can be replaced with a weaker domain separa-

bility assumption. This leads to the development of a new

BSS approach called Bounded Component Analysis (BCA),

which can be used to separate both independent and depen-

dent sources.

The main contribution of this article is to provide a ge-

ometric framework for the construction of a family of BCA

algorithms. In Section 2, BSS setup assumed in the article

and BCA assumptions are introduced. Section 3 is the main

part, where the geometric optimization settings for BCA are

introduced and equivalence of their global optima to perfect

separators are shown. The corresponding iterative algorithms

are also provided in the same section. A numerical example

to illustrate the dependent component separation performance

is given in Section 4. Finally, Section 5 is the conclusion.

2. BCA SETUP

In the article we assume the standard (over)determined instan-

taneous BSS setup where

• s =
[
s1 s2 . . . sn

]T ∈ �n is the zero mean

(without loss of generality) and potentially correlated

source vector with the covariance Rs. The sources are

bounded, i.e. si ∈ [αi, βi] for all i = 1, . . . n and for

some finite αi, βi ∈ �. We also define γi = βi − αi as

the range of source si,

• H ∈ �m×n is the mixing matrix (with m ≥ n),

• y =
[
y1 y2 . . . ym

]T ∈ �m is the mixture vec-

tor, satisfying y = Hs, and hence it has the covariance

Ry = HRsH
T .

• W ∈ �n×m is the separator matrix to be trained by the

BCA Algorithm,

• z =
[
z1 z2 . . . zn

]T ∈ �n is the separator out-

put vector, satisfying the equality z = Wy, and it has

the covariance Rz = WRyW
T ,

• We also define G = WH ∈ �p×p as the overall map-

ping from sources to separator outputs.

The goal is to train the separator W based on the available

observations of mixtures {y(1),y(2), . . . ,y(L)}.

According to [2], the sufficient conditions for separability

are given as
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• (A1) H is full rank,

• (A2) the sources are bounded,

• (A3) the (convex hull of the) domain of the sources can

be written as the cartesian product of (the convex hull

of) the individual source domains,

Note that the domain separability assumption in (A3) is

weaker than the joint pdf separability condition of the in-

dependence assumption. In other words, under the generic

assumption about source boundedness, BCA provides a more

general framework than ICA allowing separation of both

independent and dependent sources.

3. A FAMILY OF BCA ALGORITHMS

3.1. A BCA Optimization Setup

We first start by defining the range operator, for individual

vector components as

R(zi) = max
k∈{1...L}

zi(k)− min
k∈{1...L}

zi(k), (1)

and for vectors as R(z) =
[ R(z1) . . . R(zn)

]T
, i.e.,

the vector composed of individual component ranges.

The family of BCA algorithms are defined by the opti-

mization settings of the form

maximize J(W) =

√
det(Rz)

f(R(z))
. (2)

In the above formulation we consider two geometric objects

corresponding to vectors (of sources, mixtures or outputs),

whose illustrations are provided in Figure 1 for the numerical

example in Section 4:

• Bounding Hyperrectangle corresponds to the box de-

fined by the Cartesian product of the support sets of

the individual components. This can be also defined as

the minimum volume box containing all samples and

aligning with the coordinate axes.

• Principal Hyperellipse is the hyperellipse whose prin-

cipal semi-axis directions are determined by the eigen-

vectors of the covariance matrix and whose principal

semi-axis lengths are equal to principal standard devi-

ations, i.e., the square roots of the eigenvalues of the

covariance matrix.

The numerator of the objective function is the (scaled)

volume of the principal hyperellipse, whereas the denomina-

tor is a measure of the bounding hyperrectangle for the output

vectors.

We can propose different alternatives for the boundary

measure function f :

• An intuitive choice for f would be the mapping defined

by taking product of the elements of its argument, i.e.,

we can define

f1(R(z)) = R(z1)R(z2) . . .R(zn), (3)

which corresponds to the volume of the bounding hy-

perrectangle. Therefore, the optimization in (2) with f1
in (3) corresponds to maximization of the volume of the

principal hyperellipse corresponding to output samples

relative to the volume of the bounding box.

It is interesting to note that the logarithm of the objec-

tive function in (2) with f1 is equal to

log(J1(W)) =
1

2
log det(Rz)−

n∑
i=1

log(R(zi)), (4)

which is the Pham’s approximation in [3] for the Mu-

tual Information based objective function obtained by

the use of quantiles. As will be shown in the next

section, under the BCA assumptions, the maximization

of this objective function leads to separation condition.

Therefore, the objective function proposed by Pham in

ICA framework is also a valid objective function for

BCA.

• Another interesting choice would be defining

f2(R(z)) = ‖R(z)‖n (5)

where ‖.‖ is a norm defined over the vector space �n.

This choice corresponds to the main diagonal length of

the bounding hyperrectangle. The choice of the corre-

sponding norm would result in different objective func-

tions in (2). We can pick lp norms as illustrative exam-

ples.

3.2. The Global Optimality of the Perfect Separators

In this section, we show that the global optima of the opti-

mization problems in (2) correspond to some perfect separa-

tors.

We first start by noting that, under the BCA’s domain sep-

arability assumption, we can write

R(zi) = ‖Gi,:Γs‖1, (6)

where Gi,: is the ith row of G and Γs = diag(γ1, γ2, . . . , γp)
is the diagonal matrix containing range values for the sources.

We can further define C = GΓs, in which case we can write

R(zi) = ‖Ci,:‖1. (7)

Therefore, we can write the corresponding objective function

more explicitly in terms of C as

J(C) =

√
det(Rs)

det(Γs)

| det(C)|
f
([ ‖C1,:‖1 . . . ‖Cn,:‖1

]T) (8)
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3.2.1. Case 1: f1 in (3)

The objective function in this case is equivalent to

J1(C) =

√
det(Rs)

det(Γs)

| det(C)|∏n
i=1 ‖Ci,:‖1 . (9)

The equivalence of the global optima to some perfect separa-

tors follows from

| det(C)| ≤
n∏

i=1

‖Ci,:‖2 (10)

≤
n∏

i=1

‖Ci,:‖1, (11)

where the inequality in (10) is the Hadamard inequality and

the inequality in (11) is due to ordering between p-norms. The

equality in (10) is achieved iff the rows of C are orthogonal

and the equality in (11) is achieved iff the rows of C align

with coordinate axes. Therefore, the equality holds if and

only if C = PD, where P is a permutation matrix and D
is a nonsingular diagonal matrix.

3.2.2. Case 2: f2 in (5)

We perform analysis for particular lp norms used in f2:

• l1 norm based f2: In this case the objective function is

equal to

J2,1(C) =

√
det(Rs)

det(Γs)

| det(C)|
(
∑n

i=1 ‖Ci,:‖1)n . (12)

We note that

| det(C)| ≤ (
1

n

n∑
i=1

‖Ci,:‖1)n (13)

=
1

nn
(

n∑
i=1

‖Ci,:‖1)n (14)

where the inequality in (13) is obtained by applying

arithmetic-geometric mean inequality (AGMI) to (11).

Note that the equality in the AGMI holds iff all rows of

C have the same 1-norm. Therefore, for the objective

function, we can write

J2,1(C) ≤
√
det(Rs)

det(Γs)

1

nn
(15)

where the bound is achieved only for the perfect sepa-

rators of the form

C = dPΥ, (16)

where d is an arbitrary non-negative scaling, P is a per-

mutation matrix and Υ is a diagonal matrix with ±1’s

on the diagonal.

• l2 norm based f2: The corresponding objective func-

tion is

J2,2(C) =

√
det(Rs)

det(Γs)

| det(C)|
(
∑n

i=1 ‖Ci,:‖21)n/2
. (17)

Using the fact ‖R(z)‖1 ≤ √
n‖R(z)‖2 and the upper

bound in (15), we can obtain the upper bound expres-

sion for J2,2 as

J2,2(C) ≤
√

det(Rs)

det(Γs)

1

nn/2
(18)

where the bound is achieved only for the perfect sepa-

rators in (16).

• l∞ norm based f2: The corresponding objective func-

tion is

J2,∞(C) =

√
det(Rs)

det(Γs)

| det(C)|
(maxi=1,...,n ‖Ci,:‖1) . (19)

Using the norm inequality, ‖R(z)‖1 ≤ n‖R(z)‖∞ and

the upper bound in (15), the upper bound expression for

J2,∞ can be written as

J2,∞(C) ≤
√
det(Rs)

det(Γs)
. (20)

It is achieved only for the perfect separators in (16).

3.3. Adaptive Algorithms

In this section, we provide the adaptive algorithms corre-

sponding to the optimization setting in (2). We first note that

the range operator defined in (1) is a non-differentiable con-

vex function of W. The subdifferential set for this function

at a given point W is given by

∂R(zi) = {
∑

k∈Ii,max

λkeiy(k)
T −

∑
l∈Ii,min

ηleiy(l)
T |

λk ≥ 0,
∑

k∈Ii,max

λk = 1, ηl ≥ 0,
∑

l∈Ii,min

ηl = 1}, (21)

where Ii,max is the set of indexes where maximum for zi is

achieved, Ii,min is the set of indexes where minimum for zi
is achieved and ei is the standard basis vector. Note that the

subdifferential set is constructed from the convex hull of rank

one matrices whose ith row contains an input vector causing

either maximum or minimum output, and other rows are zero.

The subgradient based iterative algorithms for maximiz-

ing objective functions introduced in Section 3.1 is provided

below:

• Iterative algorithm for f1: The algorithm iterations to

maximize log(J1(W)) can be written as

W(j+1) = W(j) + μ(j)((W(j)RyW
(j)T )−1W(j)Ry

−
n∑

i=1

1

R(z
(j)
i )

ei(y(k
(j)
i,max)− y(k

(j)
i,min))

T ), (22)
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Fig. 1. Samples, Bounding Hyperrectangle and Principal Hy-

perellipse for (a) Sources (b) Mixtures (ρ = 0.5).

where

– μ(j) is the step size at the jth iteration,

– k
(i)
i,max is an index from the set I(j)

i,max, i.e., a sam-

ple index where maximum at the ith component is

achieved at the jth iteration,

– k
(j)
i,min ∈ I(j)

i,min is a sample index for the mini-

mum at the jth iteration.

• Iterative algorithm for f2: The algorithm iterations to

maximize log(J2,p(W)) can be written as, for p=1,2,

W(j+1) = W(j) + μ(j)((W(j)RyW
(j)T )−1W(j)Ry

− n

‖R(z(j))‖p
n∑

i=1

ei(|z(j)i (ki,max)|p−1y(k
(j)
i,max)

−|z(j)i (k
(j)
i,min)|p−1y(k

(j)
i,min))

T ), (23)

and, for p = ∞ as

W(j+1) = W(j) + μ(j)((W(j)RyW
(j)T )−1W(j)Ry

− n

‖R(z(j))‖∞
∑

i∈IR(z(j))

ζiei(y(k
(j)
i,max)− y(k

(j)
i,min))

T ),

where

– IR(z(j)) = {i | R(z
(j)
i ) = ‖R(z(j))‖∞}, i.e.,

the set of output indexes for which the maximum

range is achieved at the jth iteration,

– ζi’s are the convex combination weights, which

have the property ζi ≥ 0, ∀i ∈ IR(z(j)) and∑
i∈IR(z(j))

ζi = 1.

4. NUMERICAL EXAMPLE

We consider a numerical example demonstrating dependent

source separation capability of the proposed BCA algorithms.

We consider a BSS scenario with 3 sources and 3 mixtures (to

enable 3D pictures of samples) for a randomly selected chan-

nel. The sources have the Copula-t distribution with 4 degrees

of freedom and with a Toeplitz correlation parameter matrix

whose first row is [ 1 ρ ρ2 ]. In Figure 1, the illustrating

pictures for samples, bounding hyperrectangle and principal

hyperellipse are provided for both sources and mixtures.

Figure 2 shows the output total signal energy to total inter-

ference energy (over all outputs) ratio for BCA -J2,1 and Fas-

tICA algorithms and for different mixture block lengths. As

the dependent sources violates ICA assumptions, FastICA’s

perfromance degrades with source correlation. The degra-

dation in BCA algorithm performance for large ρ values is

due to inadequate representation of the ”source domain cor-

ner points” with finite data, which can be seen by the improve-

ment due to increase in block size length.
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Fig. 2. Dependent source separation performance results.

5. CONCLUSION

This article provided a family of BCA algorithms based on a

special geometric optimization setup whose global optima are

shown to be perfect separators. These algorithms can be used

for BSS problems involving both independent and dependent

signals, for the signal models obeying BCA assumptions.
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