
SECRECY CAPACITY OF WIRETAP CHANNELS WITH ADDITIVE COLORED GAUSSIAN
NOISE

Hachiro Fujita

Division of Information and Communications Systems
Tokyo Metropolitan University

ABSTRACT

Wyner has shown in his seminal paper on (discrete mem-
oryless) wiretap channels that if the channel between the
sender and an eavesdropper is a degraded version of the chan-
nel between the sender and the legitimate receiver, then the
sender can reliably and securely transmit a message to the
receiver, while the eavesdropper obtains absolutely no infor-
mation about the message. Later, Leung-Yan-Cheong and
Hellman extended Wyner’s result to the case where the noise
is white Gaussian. In this paper we extend the white Gaus-
sian wiretap channel to the colored Gaussian case and show
the finite block length secrecy capacity of colored Gaussian
wiretap channels. We also show an asymptotic lower bound
on the secrecy capacity of a specific colored Gaussian wiretap
channel for which optimum power allocation can be found by
water filling.

Index Terms— Wiretap channel, colored Gaussian, se-
crecy capacity, water-filling, autoregressive process

1. INTRODUCTION

The wiretap channel was first introduced by Wyner [7]. He
considered a degraded broadcast channel where a channel be-
tween the sender and the legitimate receiver is less noisy than
the channel between the sender and an eavesdropper. The
problem is as follows. The sender wants to reliably transmit a
message to the legitimate receiver but wants to make a leakage
to the eavesdropper as small as possible. The eavesdropper’s
uncertainty about the message is called a message equivoca-
tion. Wyner shows the optimum trade-off between the trans-
mission rate and the message equivocation. The secrecy ca-
pacity of a wiretap channel is defined to be a maximum trans-
mission rate at which the eavesdropper obtains absolutely no
information about the message. Roughly speaking, the se-
crecy capacity is given by the mutual information between
the sender and the receiver minus the mutual information be-
tween the sender and the eavesdropper. Wyner’s result has
been extended to a more general broadcast channel setting [3]
and recently multiterminal settings have extensively been in-
vestigated. For an overview of wiretap channels see [6].

Leung-Yan-Cheong and Hellman [5] considered the same
problem for the wiretap channel with additive white Gaus-
sian noise (AWGN). In this case the secrecy capacity is given
by the difference between the main channel capacity and the
eavesdropper’s channel capacity, that is,
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where P is the average power constraint and N1 (resp. N2) is
the noise power of the Gaussian channel between the sender
and the legitimate receiver (resp. between the sender and the
eavesdropper).

Images and speech signals are modeled by stationary
Gaussian processes. Such signals could be used as wiretap
channel noise as used in steganography. In this paper we ex-
tend the result of Leung-Yan-Cheong and Hellman to the case
where the noise is not white but colored Gaussian. That is, we
consider the wiretap channel with additive colored Gaussian
noise (ACGN). We show the finite block length secrecy ca-
pacity of ACGN wiretap channels. Interestingly, contrary to
the AWGN case, the asymptotic secrecy capacity of a general
ACGN wiretap channel may not be equal to the difference
between the main channel capacity and the eavesdropper’s
channel capacity.

The paper is organized as follows. In Section 2 we present
the problem formulation for the ACGN wiretap channel and
state the main result. In Section 3 we give the proofs of the
main result. In Section 4 we show a lower bound on the se-
crecy capacity of a specific ACGN wiretap channel. We then
provide numerical evaluations of the lower bound for an ex-
ample of an ACGN wiretap channel. Section 5 concludes the
paper with some remarks.

1.1. Notation

Capital italic letters such as X , Y and Z denote (usually con-
tinuous) random variables. For a positive integer N , XN de-
notes a sequence of N random variables (X1, . . . ,XN ). XN

can also be thought of as an N -dimensional column vector.
We denote the covariance matrix of a random vector XN by
KXN , i.e., KXN = E[(XN − E[XN ])(XN − E[XN ])T ],
and the differential entropy of XN by H(XN ) (instead of the
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Fig. 1. The Gaussian wiretap channel.

usual notation h(XN )). See standard textbooks on informa-
tion theory (e.g., [2]) for the definition of differential entropy.
We also denote the entropy of a discrete random variable X
by H(X). Throughout the paper logarithms are taken to the
base 2. So the unit of entropy is a bit.

2. PROBLEM FORMULATION AND THE MAIN
RESULT

We follow the problem formulation of [5]. Fig. 1 shows the
Gaussian wiretap channel considered in this paper. For sim-
plicity we assume that the source produces independent and
identically distributed (i.i.d.) random variables, although the
extension to the ergodic case is straightforward (see [5]). The
source outputs are divided into blocks of length K and each
block is input to the encoder. Let SK be a block of K source
outputs (i.e., K i.i.d. random variables). Alice encodes the
block SK into a codeword XN of length N that satisfies the
average power constraint

E[
1
N

N∑
i=1

X2
i ] ≤ P. (2)

Alice transmits XN to Bob. Bob receives a corrupted code-
word Y N = XN + V N where the summation is taken
component-wise and V N is a Gaussian random vector with
zero mean and covariance matrix KV N . Bob decodes Y N to
a codeword X̂N from which he estimates the source outputs
ŜK . We define the block error rate Pe and the transmission
rate R to be respectively,

Pe = Pr
[
SK �= ŜK

]
and R = H(SK)/N. (3)

On the other hand, Eve receives ZN = Y N + WN , a de-
graded version of Y N , where WN is a Gaussian random vec-
tor with zero mean and covariance matrix KW N . We assume
that V N and WN are statistically independent. We define the
fractional equivocation of Eve to be

Δ = H(SK |ZN )/H(SK). (4)

Remark 1. We assume that Alice and Bob and even Eve
know the statistics of random vectors V N and WN , but Eve
does not know the realizations of them. It will be shown that
Eve’s knowledge on the channel statistics does not help to de-
crease the equivocation.

Definition 1. The rate-equivocation pair (R∗, d∗) is achiev-
able if and only if for any ε > 0, there exists an encoder-
decoder pair such that

R ≥ R∗ − ε, Δ ≥ d∗ − ε, Pe ≤ ε. (5)

We denote the set of all achievable rate-equivocation pairs
(R∗, d∗) by R.

Definition 2. The secrecy capacity of a wiretap channel is
defined to be

Cs = max
(R,1)∈R

R. (6)

Definitions 1 and 2 assume the asymptotic setting where
N goes to infinity. We can also give similar definitions for the
case where N is sufficiently large but fixed (in this case ε in
Eqs. (5) depends on N .)

We are now ready to state the main result of the paper, i.e.,
the finite block length secrecy capacity of the ACGN wiretap
channel.

Theorem 1. The secrecy capacity of the N -block channel is
given by

C(N)
s = max

KXN

[
1

2N
log

|KXN + KV N |
|KV N |

− 1
2N

log
|KXN + KV N + KW N |

|KV N + KW N |
]

(7)

where the maximization is over the set of positive semidefinite
matrices KXN such that 1

N tr(KXN ) ≤ P .

Remark 2. It is not hard to show that the difference in the
brackets in Eq. (7) is nonnegative.

3. PROOFS

In this section we prove Theorem 1. We have to prove achiev-
ability and the converse.

3.1. Basic facts

Before giving the proofs, we give some basic facts as lemmas.

Lemma 1. Let UN and V N be continuous random vectors
and independent of each other, and let WN = UN + V N .

(a) KW N = KUN + KV N .

(b) If UN and V N are Gaussian, then WN is also Gaussian.

(c) H(WN |UN ) = H(V N ).
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Lemma 2. Let UN be a Gaussian random vector with any
mean and covariance matrix KUN . Then

H(UN ) =
1
2

log[(2πe)N |KUN |]. (8)

3.2. Proof of achievability

We have to show that (C(N)
s , 1) is achievable, that is, for ε >

0, there exists an encoder-decoder pair such that

R ≥ C(N)
s − ε, Δ ≥ 1 − ε, Pe ≤ ε. (9)

The proof uses the finite block length coding theorem for
ACGN channels [1]. Let ZN be a Gaussian random vector
with zero mean and covariance matrix KZN and consider an
N -block channel with additive noise ZN : if XN is the input
to the channel, then the channel output is Y N = XN + ZN ,
where the summation is taken component-wise. Define

C(N) = max
KXN

1
2N

log
|KXN + KZN |

|KZN | (10)

where the maximization is over the set of positive semidefi-
nite matrices KXN such that 1

N tr(KXN ) ≤ P .

Theorem 2. [1] For ε > 0 and for all sufficiently large in-
teger N , there exists a (2N(C(N)−ε), N) code with the proba-
bility of error approaching 0 as N → ∞.

The achievability proof of [5] is based on the random cod-
ing argument used in the proof of the (infinite block length)
coding theorem for AWGN channels (see, e.g., [2]). The same
argument using Theorem 2 applies. In fact, the achievability
proof of [5] applies to our case if we replace the channel ca-
pacities CM and CMW of [5] by the Alice-Bob (finite block
length) channel capacity C

(N)
AB and the Alice-Eve (finite block

length) channel capacity C
(N)
AE , respectively, where C

(N)
AB and

C
(N)
AE are defined by respectively,

C
(N)
AB =

1
2N

log
|KXN + KV N |

|KV N | and (11)

C
(N)
AE =

1
2N

log
|KXN + KV N+W N |

|KV N+W N | , (12)

and we take the covariance matrix KXN to be a maximizer
of the right hand side of Eq. (7). From Lemma 1 (a) we have
KV N+W N = KV N + KW N , which completes the proof.

3.3. Proof of the converse

We will show that if (R, Δ) is an achievable pair, then we
have

R(Δ − εN ) ≤ C(N)
s (13)

where εN → 0 as N → ∞. If this is the case, taking Δ = 1
we obtain R ≤ C

(N)
s /(1− εN ), which shows that C

(N)
s /(1−

εN ) is the maximum rate at which perfect secrecy is achieved.
Note that in the finite block length case we cannot make εN

zero, although εN → 0 as N → ∞. The proof also follows
the same line as the converse proof of [5].

Lemma 3. [5, Lemma 6]

R

(
Δ − KPe log ν + h(Pe)

RN

)
≤ I(XN ; Y N |ZN )

N
(14)

where ν is the size of the source alphabet and h(x) =
−x log x− (1− x) log(1− x) is the binary entropy function.

The following is a minor change of Lemma 7 of [5].

Lemma 4.

I(XN ; Y N |ZN ) =
1
2

log
|KV N + KW N |

|KV N |
− [H(ZN ) − H(Y N )]. (15)

Lemma 5. H(ZN ) − H(Y N ) is smallest if Y N is Gaussian
with zero mean.

From the above lemma, to obtain an upper bound on
I(XN ;Y N |ZN ) we may take Y N to be Gaussian with zero
mean. Then, from Lemma 1 (b) ZN = Y N + WN is also
Gaussian with zero mean. Using Lemma 2 and Lemma 1 (a),
Eq. (15) becomes

I(XN ; Y N |ZN ) ≤ 1
2

log
|KXN + KV N |

|KV N |
− 1

2
log

|KXN + KV N + KW N |
|KV N + KW N | . (16)

Taking the maximization of the right hand side of the above
inequality with respect to KXN subject to 1

N tr(KXN ) ≤ P ,
we obtain

I(XN ; Y N |ZN )/N ≤ C(N)
s . (17)

Using this and Lemma 3 we obtain

R

(
Δ − KPe log ν + h(Pe)

RN

)
≤ C(N)

s . (18)

Define εN = (KPe log ν + h(Pe))/RN . Since Pe → 0 as
N → ∞, εN → 0 as N → ∞, which completes the proof.

4. A LOWER BOUND ON THE SECRECY CAPACITY

In this section we give a lower bound on the secrecy capacity
of a specific wiretap channel where {Vi}∞i=1 is a stationary
Gaussian process and {Wi}∞i=1 is a sequence of i.i.d. Gaus-
sian random variables of zero mean and variance σ2

2 . From
the definition of the secrecy capacity C

(N)
s we have that

C(N)
s ≥ 1

2N
log

|KXN + KV N |
|KV N |

− 1
2N

log
|KXN + KV N + σ2

2IN |
|KV N + σ2

2IN | (19)
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for any input XN whose covariance matrix KXN satisfies
1
N tr(KXN ) ≤ P .

Let N(f) =
∑∞

k=−∞ RV (k)e−j2πkf be the power spec-
tral density of the noise process {Vi}∞i=1, where RV (k) =
E[ViVi+k]. Using a standard optimization technique and the
Toeplitz distribution theorem we obtain a parametric expres-
sion for an asymptotic lower bound on the secrecy capacity

lim inf
N→∞

C(N)
s ≥ Cs(θ) =

∫ 1/2

−1/2

1
2

log
(

1 +
[θ − N(f)]+

N(f)

)
df

−
∫ 1/2

−1/2

1
2

log
(

1 +
[θ − N(f)]+

N(f) + σ2
2

)
df

(20)

with the average power

P (θ) =
∫ 1/2

−1/2

[θ − N(f)]+df. (21)

The optimum power allocation for independent channel in-
puts is given by the so-called water-filling scheme.

4.1. An example

Speech signals are modeled by autoregressive (AR) pro-
cesses. Suppose that Vi’s in Fig. 1 are speech signals. In
this case Bob’s received signals are given by speech signals
plus a codeword of a predetermined Gaussian random code
(see Sec. 3.2). On the other hand, Eve’s received signals are
Bob’s received signal plus white Gaussian noise. Below we
compute the lower bound Cs(θ) for the secrecy capacity of
the ACGN wiretap channel where the noise is described by a
first-order AR process.

Example 1. Let {Vi}∞i=1 be an AR(1) process: Vi =
−ρVi−1 + Ui where −1 < ρ < 1 and {Ui}∞i=1 is a white
Gaussian noise process with power spectral density σ2

1 . The
power spectral density of {Vi}∞i=1 is well-known and given
by

N(f) =
σ2

1

|1 + ρe−j2πf |2 . (22)

See, e.g., [4], for a derivation. Varying θ in Eqs. (20) and (21)
we obtain numerical evaluations of the lower bound Cs(θ)
and average power P (θ) as shown in Fig. 2.

5. CONCLUSION

In this paper we have presented the finite block length se-
crecy capacity of ACGN wiretap channels. We also derived
an asymptotic lower bound on the secrecy capacity for the
case where the Alice-Bob channel is an additive stationary
Gaussian noise channel and Eve’s channel is further disturbed
by white Gaussian noise.

Fig. 2. Lower bound Cs(θ) vs. average power P (θ) for the
case ρ = 0.5 and σ2

1 = σ2
2 = 1.0.

We conclude the paper with future research direction. Our
proof is nonconstructive and does not give any practical code
for the ACGN wiretap channel. So code construction is an
important and interesting research problem. Recent develop-
ment of LDPC codes for the AWGN wiretap channel may be
suggestive (see [6] for a survey of this topic). It is also inter-
esting to extend our result to the Gaussian waveform channel.
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