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ABSTRACT

Most large attacks on the Internet are distributed. As a result,
such attacks are only partially observed by any one Internet
service provider (ISP). Detection would be significantly eas-
ier with pooled observations, but privacy concerns often limit
the information that providers are willing to share. Multi-
party secure distributed computation provides a means for
combining observations without compromising privacy.

In this paper, we show the benefits of this approach, the
most notable of which is that combinations of observations
solve identifiability problems in existing approaches for de-
tecting network attacks.

Index Terms— Hidden Markov Models, Multiple Ob-
servers, Identifiability, Security, Networks

1. INTRODUCTION

The Internet allows communication between any two comput-
ers with network connections. This openness unfortunately
has created many security problems. Even services such as
SSH that are designed to be secure are vulnerable to brute
force attacks. There are methods to defend against brute-force
attacks, but we first need to detect the attack.

Hidden Markov Models (HMMs) have been used as an
effective detector [1–3]. The actions of an attacker are mod-
elled as a Markov process where each state of the process
represents a step in the attack. Observations of network traf-
fic are used to infer parameters of the hidden Markov process
that generates the traffic. An anomaly/attack is detected if the
model parameters match those of a typical SSH attack.

However, most large attacks are distributed. Hackers use
botnets1 to launch brute force SSH attacks from multiple
sources. This allows hackers to hide their activities because
each observer can only see a part of the attack. Pooled ob-
servations from multiple ISPs are essential to detect these
distributed attacks.

Unfortunately, most current detection systems use data
from only one Internet service provider (ISP) due to privacy
concerns. ISPs that share data run the risk that their competi-
tors will gain some advantage through the use of this data.
Moreover, traffic data is protected by privacy legislation in

1A botnet is a set of computers that are compromised and will follow
instructions from the hacker.

many countries making it illegal to share this data with other
parties. However, it has been recently shown that multi-party
secure distributed computation can overcome this problem.
In particular, recent work has shown how HMMs [4, 5] can
be estimated, in particular for the Internet attack problem [6]
from multiple observers, without private data being shared.

Previously, only the case where the observers all see the
same distributions of observations was addressed. However,
that case is unrealistic [6]. ISPs each have a different perspec-
tive. In this paper we show how the approach can be adapted
to heterogeneous observers.

We also show in this paper that in a realistic HMM for
these network attacks the model parameters are not identifi-
able from observations of a single ISP. Without identifiabil-
ity, the estimated parameters of a HMM will be inaccurate no
matter how much data is collected. However, observations
from different ISPs with different perspectives can make the
problem identifiable, and thus lead to accurate detection of at-
tacks. This provides a strong incentive for ISPs to participate
in such a collaborative detection algorithm.

2. HIDDEN MARKOV MODELS

A Markov chain is a sequence of random variables Q =
q1 . . . qT with the Markov property: given the present state,
the future and past states are independent. Consider a Markov
chain with N possible states S = {s1, . . . , sN}. If the states
of the Markov process are not directly observed, but rather
we see some outputs drawn from the set V = {v1, . . . , vM},
which are probabilistically associated with the state of the
Markov chain, the process is referred to as a Hidden Markov
Model (HMM) [7]. A HMM is formally defined by the triplet:

• the initial probability π = (π1, . . . , πN ), where πi =
P(q1 = si),

• A = (aij)N×N , where aij = P(qt+1 = sj |qt = si), the
time-independent state transition probability; and

• B = (bik)N×M , where bik = P(Ot = vk|qt = si), the
time-independent observation probability .

Most of the results discussed in this paper can be extended
to the non-stationary case, but for brevity we restrict ourselves
to the stationary case where the initial distributionπ is also the
stationary distribution, so the HMM is completely determined
by λ = {A,B}, and the parameters λ define a probability
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measure Pλ on V∗, the set of finite words from V , including
the empty word φ by

Pλ(O1 = vk1
, . . . , OT = vkT

) =∑
q1,...,qT∈S πqi1

ai1i2bi1k1
ai2i3bi2k2

. . . aiT−1iT biT kT
. (1)

The standard definition of statistical identifiability is that

Pλ(O1, . . . , OT ) = Pλ̃(O1, . . . , OT ) ⇒ λ = λ̃,

for all T ∈ N, and all possible observations O1, . . . , OT .
However, HMMs are not identifiable in the strict sense

given above. The state labels in the Markov process are ar-
bitrary, and so we can permute the states without changing
the observation probabilities Pλ(O1, . . . , OT ). Also, we can
always construct a HMM with additional states that is equiv-
alent to λ [8]. Hence, a HMM is only ever identifiable with
respect to a fixed number of states, and modulo permutations.

The joint probability P(Ot+1 = vk, qt+1 = sj |qt = si)
plays an important role in the identifiability of a HMM. For
an observation symbol vk ∈ V , let

M(k) = AB(k),

where B(k) = diag{b1k, . . . , bNk}. That is, M(k) is an N ×
N matrix where each entry mij(k) = P(Ot+1 = vk, qt+1 =
sj|qt = si). The observation probabilities Pλ(O1, . . . , OT )
can be expressed in terms of M(·) as

Pλ(O1, . . . , OT ) = πM(O1) . . .M(OT )e, (2)

where e is the vector of length N with all 1 entries.
Two HMMs are said to be equivalent if they have the same

observation probabilities. The following lemma from [9] pro-
vides sufficient conditions for two HMMs to be equivalent.

Lemma 1. [9] Let λ and λ̃ be the parameters of two HMMs
with N and Ñ states respectively. If X and Y are N× Ñ and
Ñ ×N matrices respectively such that:

M̃(k) = YM(k)X, ∀vk ∈ V ; and

π̃ = πX ; and ẽ = Y e; and XY = IN ;

then λ and λ̃ are equivalent.
If two HMMs are equivalent, then neither is identifiable,

but we need a more practical set of conditions. The identifia-
bility of a HMM is closely related to the rank of Pλ(·), which
is defined below.

For the set of 2n words w1, . . . , wn, w′
1, . . . , w

′
n from V∗,

define a matrix Q(w1, . . . , wn, w′
1, . . . , w

′
n) whose (i, j)th

entry is Pλ(wi, w
′
j). Define rank[Pλ(·)] to be the maximum

of the rank ofQ(w1, . . . , wn,w′
1, . . . , w

′
n), for all such words,

for all n.
It is well-known [9] that all HMMs with N states have

rank[Pλ(·)] ≤ N . If the rank is N , then we say the HMM is
regular. Finesso [8] showed that the regularity of a HMM can
be determined in a finite number of operations. Petrie [10]
proved the following sufficient conditions for identifiability
(up to permutation of states) of discrete HMMs.

end

Fig. 1. The Markov chain for a typical SSH attack.

Lemma 2. [10] The parameter λ of a HMM is identifiable if
1. the HMM is regular;
2. M(k) is invertible , ∀vk ∈ V; and
3. ∃vk ∈ V such that bik, (i = 1, 2, . . . , N), are distinct.

3. SINGLE OBSERVER HMM FOR SSH ATTACKS

Typical SSH brute-force attacks often go through three phases
[3]. In the first phase – scanning – the attacker scans the target
network for vulnerable SSH services. In the second phase –
brute-force – the attacker initiates a brute-force user/password
dictionary based attack on the vulnerable hosts. In the last die-
off phase, compromised hosts communicate with the attack-
ers and wait for new instructions. During each phase, the at-
tackers alternate between an active and inactive state to make
detection more difficult. For the attacks observed in [3], when
active, the average number of packets per flow is 1.5 in the
scanning phase, 11 in the attack phase, and 1.5 in the die-off
phase. Note that these values are only examples. A Markov
model shown in Figure 1, with seven states, is used to repre-
sent the various stages of an attack. The observations are the
numbers of packets per flow with observation probabilities

B =

⎛
⎝ ε 1− 2ε ε 1− 2ε ε 1− 2ε 1− 2ε
1− 2ε ε ε ε 1− 2ε ε ε

ε ε 1− 2ε ε ε ε ε

⎞
⎠

T

,

where ε is the probability of measurement error.
Unfortunately, this model is not uniquely identifiable as

the parameters of the HMM do not satisfy condition 3 in
Lemma 2. Indeed, as states 6 and 7 have the same observation
probabilities, we can use the construction in [11] to obtain a
set of equivalent HMMs as follows. Take

Y = P

[
I 0
0 F

]
, X = Y −1,

where P is a permutation matrix, F ∈ R
2×2 is a nonsingular

matrix with Fe = e, and I is a 5 × 5 identity matrix. Then
define new matrices

B̃ = B and ÃB̃(k) = Y AB(k)X, ∀vk ∈ V ,

and we can verify that the two HMMs are equivalent by show-
ing that the conditions in Lemma 1 are satisfied. Where more
than one model fits the observations, the estimated parameters
can be badly in error, no matter how much data we collect.
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Fig. 2. A HMM with multiple observers.

4. MULTI-OBSERVER HMM

We now consider the case where multiple ISPs monitor the
same distributed attack and combine their data using the
privacy-preserving techniques described in [6].

We model the attack as before, by a Markov process with
transition matrix A. However, there are now m ISPs that
make observations of the same underlying Markov process.
Each ISP makes its own observations of the attack and these
observations are secret. Each ISP could treat the problem
as a private single-observer HMM with parameter λ

(j) =
{A,B(j)}, but when the ISPs combine their measurements to
jointly infer the under-lying common hidden Markov model,
we have a multi-observer HMM.

We shall assume that the observations of the different ISPs
are independent. That is a natural assumption, as dependence
would weaken the need for multiple observers, or privacy. As-
sume also that the set of possible observations V is the same
for all ISPs. However, each ISP j has its own observation
probability given by the matrix B(j) = {b

(j)
ik }. These differ

because each ISP has a different perspective on the attack.
In this new model, the observation set is Vm. Denote the

observations
O = {O1, . . . ,OT },

where each element Ot is a vector Ot = {O1t, . . . , Omt}
of observations at time t from each ISP. The sequence of
T observations that ISP j makes is denoted as O(j) =
{Oj1, . . . , OjT }. An example is given in Figure 2.

The probability of a set of observations at time t, condi-
tional on the state of the Markov process, is given by

P(Ot|qt = si) =
m∏
j=1

P(Ojt = vkj
|qt = si) =

m∏
j=1

b
(j)
ikj

. (3)

The multi-observer HMM has transition matrix A and the
observation probabilities given in (3). Its parameter set is
therefore λmulti = {A, {B(j)}}. From T observations of
the multi-observer HMM, {O1, . . . ,OT }, we can infer the
matrix A and the observation probabilities P(Ot|qt = si) us-
ing the Baum-Welch algorithm [7]. We presented a privacy-
preserving protocol for the Baum-Welch algorithm in [6], in
the homogenous case where all ISPs have the same observa-
tion probabilities. We have extended this protocol to the het-
erogeneous case (details omitted for brevity), and we evaluate
the accuracy of this extension in the next section.

In addition, in the homogenous case [6], the identifiability
of the multi-observer HMM was the same as for the single ob-
server case. However, when the observers are heterogeneous,
the multi-observer problem may be identifiable, even if the
single observer problem is not, as shown below.

Define for every word w = v1 · · · vk ∈ V∗

M(w)
.
= M(v1) . . .M(vk); g(w)

.
= πM(w); h(w)

.
= M(w)e.

For the set of 2N words w1, . . . , wN , w′
1, . . . , w

′
N , let G and

H be two matrices of size N ×N where the i-th row of G is
g(wi) and the j-th column of H is h(w′

j). Similar notations
are used for the multi-observer HMM where each observation
is a vector of m individual observations. From [8],

Q(w1, . . . , wN , w′
1, . . . , w

′
N ) = G(w1, . . . , wN )H(w′

1, . . . , w
′
N ).

Lemma 3. The multi-observer HMM is regular if

• ∃j ≤ m such that HMM λ
(j) is regular; and

• the observation probabilities b
(j)
ik > 0 for all i ≤

N, k ≤ M, j ≤ m.

Proof. Without loss of generality, assume that the single
observer HMM λ

(1) is regular. Thus there exist 2N words
w1, . . . , wN , w′

1, . . . , w
′
N , each of length ni = |wi|, such

that Q(w1, . . . , wN , w′
1, . . . , w

′
N ) is non-singular [8]. Denote

the symbols of the word wi by wi = vki,1
. . . vki,ni

. As
Q(w1, . . . , wN , w′

1, . . . , w
′
N ) is non-singular, the matrix

G(w1, . . . , wN ) =

[
πAni

ni∏
l=1

B(1)(ki,l)

]
1≤i≤N

(4)

is also non-singular, i.e., its rows are linearly independent.
In the multi-observer HMM, consider the 2N words

y1, . . . , yN , y′1, . . . , y
′
N where each word yi has ni sym-

bols in which the l-th symbol is a vector of m components
with the first component being vki,l

and the others v1, i.e.,
yi = {vki,1

, v1, . . . , v1} . . . {vki,ni
, v1, . . . , v1}. The i-th row

of the matrix G(y1, . . . , yN) is

g(yi) = πM(yi) = π
∏ni

l=1

(
AB(1)(ki,l)

∏m

j=2 B
(j)(1)

)
= πAni

(∏ni

l=1 B
(1)(ki,l)

) (∏m

j=2 B
(j)(1)

)ni

. (5)

Since the rows of the matrix in (4) are linearly inde-
pendent and b

(j)
ik > 0 for all i, j, k, the rows g(yi) of

G(y1, . . . , yN) given in (5) are therefore also linearly in-
dependent. Thus, G(y1, . . . , yN ) is non-singular.

Similarly, we can prove that H(y′1, . . . , y
′
N ) is non-

singular. Hence, Q(y1, . . . , yN , y′1, . . . , y
′
N ) is non-singular

and the multi-observer HMM is regular.

Theorem 1. The matrix A in the multi-observer HMM is
identifiable if

1. at least one of the HMMs {λ(1), . . . ,λ(m)} is regular;

2. A is a non-singular stochastic matrix;
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3. b
(j)
ik > 0 for all i ≤ N, k ≤ M, j ≤ m;

4. ∃vk1
. . . vkm

∈ V such that
∏m

j=1 b
(j)
ikj

are distinct for
i = 1, 2, . . . , N

Proof. We prove that the multi-observer HMM satisfies the
Petrie’s conditions in Lemma 2. From Condition 1 and 3 and
Lemma 3, the multi-observer HMM is regular.

The second of Petrie’s conditions thatM({vk1
, . . . , vkm

})
is invertible for all symbols {vk1

, . . . , vkm
} ∈ Vm follows

from the fact that M(vk1
, . . . , vkm

) = A
∏m

j=1 B
(j)(kj) and

that the matrices A and B(j)(kj) are non-singular.
The last of Petrie’s conditions comes from Condition 4

that ∃vk1
. . . vkm

∈ V such that
∏m

j=1 b
(j)
ikj

are distinct.

Note that almost all HMMs are regular and satisfy the first
two conditions [10]. If the single observer HMMs are regular
but not identifiable, the multi-observer HMM is identifiable
under mild conditions (condition 3 and 4 in Theorem 1) on
the individual observation probability.

5. EVALUATION

We have extended the implementation of privacy preserving
protocols in [6] to the multi-observer HMM with heteroge-
nous observation probabilities discussed in this paper. The
code (written in Python) is available at www.hxnguyen.net.
We evaluate the accuracy of this implementation, especially
the effect of identifiability by running simulations for the SSH
attack HMM in Section 4 with m observers. The transition
matrix A is as in [3]. For each observer, we create a random
observation matrix of size 7 × 3 with the same observation
probabilities for states 6 and 7 as in Section 3.

Using 128 bit encryption keys for privacy preserving com-
putation, we compare the errors as we increase the number of
participants m in the protocol. We apply the secure Baum-
Welch algorithm to infer the transition matrix A with T =
100 samples. We compare errors in the estimates by calculat-
ing the Mean Squared Error (MSE) over the matrix A.

The resultant MSE is shown in Figure 3. The plot shows
that there is a substantial increase in accuracy when two par-
ties collaborate, but that the marginal improvement lessens
with increasing numbers of participants in the protocol. This
dramatic improvement can be explained by the fact that the
matrix A is unidentifiable with one observer but is identifi-
able with multiple observers.

6. CONCLUSION AND FUTURE WORK

In this paper we have shown that collaboration between mul-
tiple parties can improve the quality of estimates provided
by HMMs. More importantly, using privacy preserving tech-
niques the parties can collaborate without revealing private
data to each other. In the context of ISPs, this would mean that
multiple ISPs can help each other detect network problems
without running the risk of exposing critical data. Our future
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Fig. 3. MSE of the transition probabilities A.

work includes finding the necessary conditions for identifia-
bility of multi-observer HMMs.
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