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ABSTRACT

Localization of constituent nodes is of fundamental im-

portance in many wireless sensor networks (WSNs) related

applications. Existing research has mainly investigated the

problem of localization in static WSNs, where the localiza-

tion is performed mainly at the time of the node deployment.

In contrast, it is important to keep track of the current loca-

tions of the nodes by invoking the localization algorithm pe-

riodically in mobile nodes. The high computation cost asso-

ciated with most existing localization algorithms makes them

less practical to use in resource constrained mobile sensor net-

works (MSNs). Additionally, these existing techniques often

fail in hostile environments where some of the nodes may be

compromised by adversaries, and used to transmit mislead-

ing information aimed at preventing accurate localization of

the remaining sensors. In this paper, we build on our earlier

work to propose an iterative gradient descent based technique

with low computational complexity to securely localize nodes

in MSNs. The proposed algorithm combines iterative gradi-

ent descent with selective pruning of inconsistent measure-

ments to achieve a high localization accuracy. Simulation re-

sults demonstrate that the proposed algorithm can find a map

of relative locations of the MSN even when some nodes are

compromised and transmit false information.

Index Terms— Mobile Sensor Networks, Secure Local-

ization

1. INTRODUCTION

Many wireless sensor networks related applications require

knowledge about locations of the constituent nodes. In such

applications, it is desirable for the constituent nodes to be

able to determine their location before they start sensing and

transmitting gathered information. Many existing techniques

use anchor nodes to determine the positions of other nodes in

the network. These techniques often fail in hostile environ-

ments where some of the nodes may be compromised by ad-

versaries, and used to transmit misleading information aimed

at preventing accurate localization of the remaining sensors.

Furthermore, sensor nodes may also have limited computa-

tional power and memory due to the low cost requirements to

make it feasible to deploy sensor nodes in many commercial

applications. Our previous work took these factors into con-

sideration and proposed a computationally efficient secure lo-

calization algorithm for static WSNs to withstand malicious

attacks [1].

For some applications, it is important for nodes to be

equipped with mobile capabilities. For example, to achieve

a broad coverage in a given area during deployment, mo-

bile nodes can adjust their positions in order to determine

the most efficient configuration [2]. Mobile nodes are also

advantageous in such applications as battlefield and disaster

rescue operations. Locations of the nodes change dynami-

cally in such applications of MSNs. Therefore, we need to

devise techniques to update the location estimates periodi-

cally to keep track of the nodes. Similar to static WSNs,

mobile networks are also vulnerable to malicious attacks in

hostile environments. Hence, it is important to design lo-

calization techniques for MSNs that are attack resilient and

computationally efficient.

Several prior works have examined localization in MSNs

in the absence of malicious attacks. A two-stage Monte Carlo

based approach for localization was proposed in [3]. In the

first stage of this method, a fixed number of candidate sam-

ple locations, satisfying the velocity constraints on a given

node, are randomly drawn, and in the second stage of filtering,

samples that are inconsistent with the measurements obtained

from anchor nodes are filtered out. The localization accuracy

of the algorithm in [3] was improved in [4] by using a box

shaped region to sample particles in the prediction phase, and

eliminate inconsistent particles in the filtering stage using ve-

locity constraints. The Monte carlo algorithm was extended

to incorporate security in [5] by modifying the filtering stage.

Instead of identifying points that are consistent with measure-

ments from all the anchors, the position consistent with the

maximum number of measurements from anchors is deter-

mined. This approach is similar to the voting based approach

in [6] to secure localization in static WSNs, and suffers from
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high computational and storage requirements that may not be

available for resource constrained networks.

Most of the prior works also assume the presence of an-

chor nodes that are used to determine the position of the mo-

bile nodes, and cannot be applied to MSNs without anchor

nodes. In contrast, we consider the case where network may

not have any anchor nodes. To the best of our knowledge, this

is the first work addressing the problem of localizing nodes in

MSNs in the presence of malicious attacks, and without the

help of anchor nodes.

2. PROBLEM DESCRIPTION

In this section, we describe the problem setup for secure lo-

calization in MSNs. We are interested in determining the

location estimates of each node in the network, and period-

ically updating the estimates after a fixed amount of time.

This problem can be equivalently reduced to the estimation

of a relative location map that preserves the distances and

neighborhood relation among the nodes. Many applications

such as leader-following [7], and direction-based routing al-

gorithms [8] require only the information about a relative lo-

cation map. As relative location map preserves pairwise dis-

tances, the set of relative locations is only a rotation and trans-

lation of the absolute locations. If the absolute positions of

any three nodes are known, the absolute locations of remain-

ing nodes can be determined by estimating the rotation and

translation parameters. Even in applications where the abso-

lute locations of the nodes need to be determined, a relative

location map can be used as an intermediate step in the local-

ization process. So, instead of finding absolute locations, we

estimate a relative location map of the nodes in the network.

Let us denote the location of the ith node in the network

at time instant t by Pi(t) = {xi(t), yi(t)}, and let S(t) =
{P1(t),P2(t), . . . ,PN (t)} be the set of positions of all the

N nodes in the network. Let dij(t) = ‖Pi(t) − Pj(t)‖,

j �= i be the distance between nodes i and j at time t. At

each time-instant, node i receives a signal containing the cur-

rent location estimate of node j and a time-stamp from node

j, and estimates dij(t), j = {1, 2, . . . , N}, j �= i using time

of arrival or other distance estimation methods. These dis-

tance measurements may be noisy in practice, and we model

the measurement errors as additive Gaussian noise, nik(t),
with zero mean and variance σ2. We also assume that nodes

remain stationary during transmission and processing of the

time-stamp signals because the time elapsed in these opera-

tions is very small when signal is traveling at the speed of

light in radio transmission or the speed of sound in ultrasound

transmissions. The problem of estimating a relative location

map at time instant t involves finding a set of location esti-

mates Ŝ(t) = {P̂1(t), P̂
′
2(t), . . . , P̂

′
N (t)} such that the inter-

node distances d̂ij(t) = ‖P̂i(t) − P̂j(t)‖ are approximately

the same as the true inter-node distances dij(t).
Multidimensional scaling (MDS) has been used to esti-

mate such relative location maps in static WSNs [9]. This

approach has high computational complexity, as it uses singu-

lar value decomposition (SVD) whose complexity is O(N3)
where N is the number of nodes in the network. The solution

to the MDS problem also requires the knowledge of inter-

node distances between all the nodes and thus requires cen-

tralized processing. We adapt the computationally efficient

gradient descent approach proposed in [1] to find a relative

location map of the entire network in an iterative manner. To

apply this algorithm, each node needs to know the current es-

timates of the position of other nodes, and its own distance

from other nodes, eliminating any need for centralized pro-

cessing.

Attack Model: We consider attacks where each malicious

node independently falsifies the time-stamp of their signal to

provide erroneous information to other nodes. We model this

scenario by adding a random value uik uniformly distributed

in (0, dmax] to the distance estimate provided to the ith local-

izing node by the kth node, if node k is malicious. A sim-

ilar attack model was used in [5] to model non-coordinated

attacks in MSNs. The distance estimate obtained by node i
from node k at time instant t can then be written as,

d
(nc)
ik (t) =

{
dik(t) + uik + nik(t) if node k is malicious,

dik(t) + nik(t) otherwise,

where dik(t) is the actual distance between node i and node

k, and nik(t) is the Gaussian measurement noise with mean

0 and variance σ2.

3. GRADIENT DESCENT BASED APPROACH

Before describing the gradient descent based approach to se-

cure localization in MSNs, we present a brief overview of our

previous work on secure localization in static WSNs using

the similar gradient descent based method [1]. The main idea

behind the algorithm is to minimize a suitable cost function

involving the position of the localizing node and the available

measurements using an iterative gradient descent approach.

The cost function is dynamically updated to remove incon-

sistent measurements arising from malicious nodes. The al-

gorithm operates in two stages. In the first stage, the cost

function involves data from all the anchor nodes. In the sec-

ond stage, selective pruning of inconsistent measurements is

performed to mitigate the effect of malicious nodes on the so-

lution.

3.1. Gradient Descent Approach for MSNs
We extend the gradient descent algorithm proposed in [1] to

be applicable for the case of MSNs, when no anchor node is

present in the network. Each node i randomly initializes its

estimate for the current position P̂i(0). At each subsequent

time instant t, the ith node obtains measurements {P̂k(t −
1), d

(nc)
ik (t)} for (k = 1, 2, . . . , N ; k �= i) from the remaining

nodes and formulates a Least Squares (LS) problem to esti-

mate the current position of node i, P̂i(t), that minimizes the
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following cost function:

f
(t)
i (P(t)) =

N∑
k=1, k �=i

(
‖P(t)− P̂k(t− 1)‖ − d

(nc)
ik (t)

)2

(1)

The negative of the derivative of each term inside the sum-

mation in Eq. (1) evaluated at current position P̂i(t− 1) will

give the gradient of each term for node i resulting due to other

nodes in the network. Node i evaluates the gradient of the

cost function in Eq. (1) at the estimate of its current position

P̂i(t − 1) and then updates the estimate by adding one step,

δ(t), in the direction of the negative of the gradient:

g′
i(t) = − ∇P

(
f
(t)
i (P)

)∣∣∣
P=P̂i(t−1)

(2)

P̂i(t) = P̂i(t− 1) + δ(t)× g′
i(t)

‖g′
i(t)‖

(3)

This process is repeated until the gradient becomes small

enough. At this point, the algorithm converges to the LS

solution of Eq. (1). The algorithm then switches to the sec-

ond stage and prunes out a fraction of the terms with large

magnitude of gradient in the cost function of Eq. 1. Most of

these large magnitude gradient terms come from the inconsis-

tent measurements given by the malicious nodes. As will be

shown in the next section, estimates of the relative location

map preserve the pairwise distances and can accurately track

mobile nodes.

4. SIMULATION RESULTS

In this section, we demonstrate experimentally the accuracy

of the proposed method for localization in MSNs under the at-

tack model described in Sec. 2. 30 sensor nodes are randomly

deployed in a 60m × 60m area. The velocity of the nodes at

each instant is a random variable with x and y components,

Vx and Vy , uniformly distributed on [0, Vmax]. This mobility

model is similar to the random way-point model used com-

monly for modeling mobile and ad-hoc networks [3,10]. The

measurement noise, nik(t), is assumed to be additive Gaus-

sian with mean 0 and σ = 2m. The maximum error intro-

duced by a malicious node into the distance measurements

dmax = 30m. In the selection stage of the gradient descent

algorithm, we prune 50% of the force vectors.

The estimation accuracy of the estimated relative loca-

tion map is measured by comparing the actual inter-node

distances dij(t) with estimated inter-node distances d̂ij(t),

where d̂ij(t) = ‖P̂i(t) − P̂j(t)‖. The localization error

E(t) is defined as the sum of the absolute difference between

dij(t) and corresponding d̂ij at each time-instant for all i and

j:

E(t) =
1

N2

N∑
i=1

N∑
j=1

|dij(t)− d̂ij(t)| (4)

A lower value of E(t) implies that the algorithm can accu-

rately estimate the inter-node distances and provides a relative
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(a) 33% of the nodes are malicious
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Fig. 1. Localization error, E(t), as a function of time for

estimating the relative locations in MSNs.

location map that satisfies the inter-node distance constraints.

The estimated relative location map can then be used to find

the absolute locations of all the nodes in the network if true

locations of three nodes are known.

We first evaluate the accuracy of the gradient descent al-

gorithm for a fixed maximum velocity of the nodes Vmax =
1m/unit time. A constant step size of δ(t) = 1√

2
is used,

which is approximately the average distance a node can move

in unit time. In general, the step size can be chosen as Vmax√
2

.

The plot of error E(t) as a function of time when 33% and

50% of the nodes are malicious is shown in Fig. 1. The dashed

line represents the error using the proposed gradient descent

approach while the solid line represents the error when the

second stage of the algorithm is not used and will be similar

to the LS solution. The value of E(t) is high at the initializa-

tion of the algorithm as each node initializes its position esti-

mate randomly. The localization error decreases during sub-

sequent time-instants as the algorithm updates the estimate of
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Fig. 2. Effect of velocity on the error in estimating the map

of relative locations.

the position at each time-instant. Applying the second stage

of the algorithm to prune out the observations due to mali-

cious nodes further reduces the average error to less than 1m.

We also examine the effect of the node velocity on the lo-

calization accuracy. We fix the value of dmax to 20m and de-

termine the localization error after convergence for different

maximum velocities Vmax. Fig. 2 compares the localization

accuracy of the gradient descent algorithm with and without

pruning as a function of the velocity. The step size of the

gradient descent algorithm is chosen to be Vmax√
2

as described

previously. The point corresponding to Vmax = 0 denotes

the special case of determining relative location map in the

static network in the absence of any anchor node. A small

finite step size is used to update the estimates at each iteration

for the case of Vmax = 0. From this figure, we also observe

that as long as the velocity is small, the error in estimating

the map of relative locations is small. As the node velocity

increases, the localization error also increases. The increment

in localization error is more in the gradient descent approach

with pruning as opposed to without pruning. At high veloci-

ties, each node can move quite far from its previous position

and the gradient descent approach may not be able to track the

node position accurately. Applying multiple iterations in each

time unit can alleviate this problem at the expense of higher

computational complexity.

5. CONCLUSION

In this paper, we extended our earlier work to propose a com-

putationally efficient algorithm based on an iterative gradient

descent approach to securely estimate a relative location map

of the nodes in mobile sensor networks in the presence of

malicious adversaries. The proposed algorithm combined it-

erative gradient descent with selective pruning of inconsistent

measurements to achieve a high localization accuracy. The

proposed algorithm was shown to be attack resilient to ma-

licious adversaries injecting false information under the de-

scribed attack model. The average localization error in the

relative location map was less than 1.5m for a deployment re-

gion of size 60m × 60m when up to 50% of the nodes are

malicious, and nodes are moving with a maximum velocity

of 3 meters per second.
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