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ABSTRACT

The field of forensics aims to understand the physical biomark-

ers that make each person unique. Recently, it has been

discovered that one of the traits that makes us unique from

one another are the composition of the microbial commu-

nities found throughout our bodies. For example, identical

twins who share the same set of DNA may have vastly dif-

ferent microbial communities in or on various body sites.

It was recently discovered that microbial communities can

be exploited for forensic identification by clustering sam-

ples from individual’s skin and objects that they may have

previously touched. Typically, this is done by using basic

multi-dimensional scaling analysis using phylogenetic dis-

tances. In this work, we circumvent the use of phylogenetic

distances by using the raw community abundances, and we

present an application of kernels for metagenomic data anal-

ysis. In addition, we show that strategic selection of features

can improve classification accuracy.

Index Terms— forensics; metagenomics; bioinformatics

1. INTRODUCTION

Metagenomics is the study uncultured microorganisms ob-

tained directly from an environmental sample [1]. In ecology,

scientists are not only concerned about what species are in

an environmental sample but how different samples compare.

Through next generation sequencing, we are now able to col-

lect, process and annotate sequences obtained from a microbe

that contains thousands of microbial species, which can pro-

vide a plethora of information about the site from where the

sample was obtained. Several recent studies have been con-

ducted that examine the microbial communities of infant gut

[2] and several body sites of adults [3]. Studies like these pro-

vide insight into how our microbial communities change over

time and the effect that obesity, disease or cancer will have on

our microbes. Perhaps of even greater concern for this work,
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is that our microbial communities maybe capable of telling us

apart. Recent studies of the human microbiome have demon-

strated that the microbial communities vary between individ-

uals and between body sites [4]. Furthermore, recent stud-

ies into forensic applications of metagenomics have demon-

strated that collecting environmental samples from individ-

uals and objects may provide a significant insight into the

identification of potential suspects [5]. Fierer et. al. collect

metagenomic samples from three individuals’ finger tips and

the keyboards they have used, sequence the samples then ap-

ply UniFrac with a multi-dimensional scaling technique [5,6].

UniFrac is a phylogenetic distance computed using a phylo-

genetic tree generated from the metagenomic samples. The

results indicate that the individual who last touched the key-

board can be identified, even hours after use.

The primary contributions of this work can be summa-

rized as follows: (a) kernels are introduced for coordinate

analysis schemes in ecology studies, (b) comparison of five

different coordinate analysis methods for metagenomic fea-

ture extraction along with other popular feature extraction

methods, (c) analysis of the clusterability of metagenomic

samples for forensic identification, and (d) a preliminary anal-

ysis on the study of feature selection versus extraction for

forensic identification.

2. METHODS FOR FORENSIC IDENTIFICATION

Related work in the study of the human microbiome have

used standard coordinate analysis schemes with little justi-

fication of the methods of analysis. Therefore, in this work

we use several coordinate analysis schemes along with a new

implementation that takes advantage of kernels. It is impor-

tant to note that while the microbial communities may be

capable of telling us apart, there has been little work in the

way of establishing a pipeline for forensic identification us-

ing environmental samples (e.g., preprocessing, feature ex-

traction/selection, clusterability, classifier accuracy. . . ). The

process of addressing metagenomic samples is addressed in

Fig. 1 and described in Section 2.1.
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Fig. 1. Suggested pipeline for the use of metagenomic data derived from a community data matrix.

2.1. Analysis of Metagenomic Samples for Forensics

Our aim in this work is to investigate how to most accurately

identify an individual solely based on a metagenomic sample

by working with a community data matrix (CDM). The CDM

is an Q × N matrix, where Q is the number of species, or

operational taxonomic units (OTUs) and N is the number of

samples. (We will use OTU instead of species in the rest of

the paper, since OTU is a strict definition of species whereby

the sampled 16S rRNA genes must be at least 97% similar to

be considered within the same species.) Many metagenomic

samples contain thousands of OTUs leading to very high di-

mensionality data sets; however, upon further investigation,

we find that many of OTUs have a few occurrences. One ap-

proach to reduce the dimensionality, and hence to reduce the

impact of the curse of dimensionality, is to remove OTUs that

occur fewer times then a specified threshold. While the selec-

tion of such a threshold may seem rather arbitrary, it may be

necessary to remove the OTUs that do not offer information,

and may simply be viewed as a type of noise in the feature

set.

An important question that we seek to answer from this

analysis is whether features used to identify and group indi-

viduals should be extracted by means of a common transform

or selected via a feature selection algorithm. On one hand, the

feature selection methods provide biological meaning to the

data (i.e., selection of attributes from the data), whereas fea-

ture extraction methods (i.e., derived via some transform or

projection) may make attribute interpretation a bit ambiguous.

For this work, we have selected several popular feature selec-

tion methods such as maximum relevance (Mrel) [7], max-

imum relevance minimum redundancy (mRMR) [7], linear

forward search (LFS) [8], and a genetic search (GAFS) [9].

LFS and GAFS are implemented in the Weka data mining

package [10]. For feature extraction, we test the Fisher linear

discriminate (FLD), and principal coordinate analysis (PCoA)

implemented with the Euclidean, Chord and Hellinger dis-

tances [11]. PCoA has been widely used in many ecological

and metagenomic studies for multi-dimensional scaling. We

also provide a variation of PCoA that uses kernels to provide

the distance measures in feature space (refer to Section 2.2).

In order to address the question of feature selection ver-

sus extraction and which, if any preprocessing schemes are

beneficial, we need to select a figure of merit to assess perfor-

mance, or the identification success rate of the system. Thus,

we need a way to measure closeness of the bacterial commu-

nities, so that we can explore the effect of using more/less

principal coordinates. One figure of merit for the clusterabil-

ity of the data would be to measure the impurity of the cluster

(k-means is selected as the clustering algorithm). Our cluster

impurity is given by:

ρ = 1− 1

k

k∑

�=1

| Sω�
∩ C� |

| C� | (1)

where Sω�
= {(xn, yn) | xn ∈ C� and yn = ω�} is the

set of data from class ω� assigned to cluster �, (xn, yn) are

data pairs, C� is the set of data assigned to cluster �, and ω�

is the class that occurred most frequently in cluster �. Es-

sentially cluster impurity is the average error of each cluster,

where the error is formed by associating each cluster with

its most likely label. Data collected from the skin are used

to initialize the clusters and data collected from the physical

objects are then used for testing. Using the impurity mea-

sure allows us to report the clustering accuracy across varying

numbers of coordinates retained after PCoA. Since the pre-

processing and feature selection/extraction methods are to be

applied to forensic identification, we selected a generic clas-

sifier for comparison – the support vector machine (SVM),

which is not be limited by the curse of dimensionality. The

SVM is used as the baseline classifier for this study due to

its wide popularity, ability to solve non-linear problems via

the kernel, and its computational efficiency with large scale

implementation schemes [12]. The Shogun machine learn-

ing toolbox was used to implement the SVM [13]. Unless

otherwise noted, all supervised methods are performed using

only samples obtained from the skin and applied to samples

obtained from objects (e.g., mice or keyboards).

2.2. Kernel Methods in Principal Coordinate Analysis

Kernels methods have shown great success in many areas

of machine learning including classification, regression and

component analysis [12, 14]. It only seems natural to apply

kernel methods to PCoA techniques, as PCoA is used by

many biologists and ecologists. In this section we provide the

tools needed to integrate kernels with PCoA for data analysis.

Traditional PCoA methods perform multi-dimensional

scaling on distance matrix, which measures the pairwise

distance between samples [11]. Similar to principal compo-

nent analysis (PCA), PCoA computes the eigenvectors and

eigenvalues of the pairwise distance matrix. The principal
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coordinates of the data are then derived from the eigenvec-

tors. There are a large number of distance measures that

can be applied to obtain the distance matrix, including phy-

logenetic distances, which require a phylogenetic tree to be

available [6]. In this work, we use kernels as distance mea-

sures, which are computed as norms in feature space [14].

Traditional positive definite (pd) kernels provide us with a

measure of similarity by way of the canonical dot product;

however, a large class of kernels, known as conditionally

positive definite (cpd), also exist for measuring dissimilarity

rather than similarity in feature space. For example, a norm

in feature space is calculated as:

‖Φ(x)− Φ(x′)‖2 = k(x,x) + k(x′,x′)− 2k(x,x′) (2)

where k(x,x′) = Φ(x)TΦ(x′) is the kernel. While there is a

large body of work that describes the properties of cpd kernels

[14], we simply note that the pairwise distance matrix used in

PCoA can be computed using kernels that measure a norm

distance in feature space. For this work we have selected the

exponential and multi-quadratic kernels for the experiments

as described in [14].

3. PRELIMINARY RESULTS
3.1. The Forensic Dataset

In this work we selected a real-world dataset, collected from

the finger tips and keyboards of three individuals [5], which

has been used as a benchmark in [15]. The environmental

samples obtained from the keyboard were collected after sev-

eral hours from the time the keyboard was initially touched

by the subject. The original data consists of 120 samples

from three subjects with approximately 3600 OTUs; how-

ever, we removed any OTU that has been detected less than

10 times for all 120 samples. Each sample is normalized prior

to PCoA. We refer to this matrix as the community data ma-

trix. For a more detailed description of the sample collection

and sequencing of the forensic data, refer to [5].

3.2. Experiments

We begin discussing experimental results by applying PCoA

schemes to the CDM. The three individuals are clearly differ-

entiable using the metagenomic samples as shown in Fig. 2,

which illustrates PCoA used with five different distance met-

rics. It appears, from visual inspection, that PCoA with the

Hellinger distance provides the best separation of the indi-

viduals for the different distance metrics tested (refer to Fig.

2(b)). We also observe that the individual’s skin and keyboard

samples cluster together quite well, which was also observed

in [5]. Finally, Fig. 2(f) contains the amount of variation

in each principal coordinate for each distance metric tested.

Note that while PCoA with the Euclidean distance provides

the most variation in fewer coordinates, it is the Hellinger dis-

tance that provides the best differentiation between groups.

The data obtained from PCoA are clustered using k-

means with the number of principal coordinates varied from
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(c) Chord PCoA
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(d) Multi-Quadratic kernel PCoA
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(e) Exponential kernel PCoA
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(f) Variation retained in the princi-

pal coordinates

Fig. 2. PCoA applied to the forensic data with three principal

coordinates retained.

2 to 50. Clustering subjects is split into slightly different

scenarios and the average cluster impurity is measured. As

stated previously, this experiment is designed to demonstrate

what is gained, or lost, due to dropping principal coordinates.

The first scenario is the ability to cluster a subject with his/her

own samples, regardless of the sample site (e.g., skin or key-

board). Two thirds of the data are used to initialize clusters

and the remaining data are used for testing. Fifty independent

trials are averaged to obtain the impurities in Fig. 3(a). The

second scenario initializes the clusters with the skin data, and

the clusters are evaluated on the data obtained from the key-

boards. The cluster impurities for the second task are shown

in Fig. 3(b).

A common trend observed in Fig. 3 is that increasing the

number of coordinates does not necessarily reduce the cluster

impurity. In fact, the impurity is increasing with the number

of coordinates retained. It is clear that after five coordinates,

there is not much to be gained in terms of improving the clus-

ters, and that FLD is highly competitive with the PCoA meth-

ods performing at their best. We note that FLD’s impurity

contains very little variation, which can be attributed to ran-

dom chance, as FLD reduces to two dimensions because the

number of classes remains fixed at three (i.e., each person in
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Principal Coordinates 

(a) Sample site independent

Principal Coordinates 

(b) Sample site dependent

Fig. 3. Cluster impurities of k-means. (a) samples are ran-

domly selected regardless of site to initialize and test k-

means, and (b) samples from the skin are used to find the

cluster centers and ”label” each cluster then the keyboard data

are used for testing.

Table 1. SVM ISR with a polynomial kernel. The multi-

class SVM is implemented in a 1 vs. 1 as well as a 1 vs. all

configuration.

Feature 1 vs. 1 1 vs. all Feature 1 vs. 1 1 vs. all
Chord (2) 65.56 67.78 Exp. (2) 76.67 76.67
Chord (3) 51.11 51.11 Exp. (3) 76.67 71.11
Chord (5) 73.33 62.22 Exp. (5) 78.89 80.00
Chord (10) 75.56 66.67 Exp. (10) 68.89 73.33
Eucl. (2) 84.44 83.33 M-quad. (2) 76.67 74.44
Eucl. (3) 80.00 77.78 M-quad. (3) 82.22 74.44
Eucl. (5) 80.00 80.00 M-quad. (5) 75.56 74.44
Eucl. (10) 66.67 64.44 M-quad. (10) 73.33 70.00
Hell. (2) 84.44 81.11 FLD 92.22 91.11
Hell. (3) 91.11 85.56 LFS (9) 84.44 83.33
Hell. (5) 88.89 90.00 GAFS (1103) 83.33 84.44
Hell. (10) 80.00 78.89 Mrel (10) 88.89 85.56
CDM (444) 91.11 91.11 mRMR (10) 87.78 96.67
CDM (3695) 90.00 93.33

the dataset).

Next, we address feature selection versus extraction. A

multi-class SVM configuration was used with a polynomial

kernel of order 6 and regularization of 100.0, so chosen to

minimize the risk of over-fitting on such small data set. The

SVM is trained using only the skin samples and tested on

samples collected from a keyboard. Table 1 contains the

identification success rate (ISR) of the SVMs for all features

tested, where Chord, Eucl., Hell., Exp., & M-quad. are PCoA

methods, CDM (444) are the original abundances with more

than 10 occurrences, CDM (3695) are the original data with

all OTUs, and mRMR, GAFS, & LFS are feature selection

methods. The parentheses include the number of features.

Using the raw CDM for this data set appears to be sufficient

for good classification and removing samples due to low

abundance. While blindly reducing the low OTU counts dra-

matically reduces the dimensionality, the reduced feature set

has little impact on the ISR. The FLD appears to be a reliable

feature extractor, but does not seem any more robust than

using the raw feature set. However, the dimensionality with

FLD is lower then that of the raw features. mRMR achieves

the highest ISR, and appeared to be robust to kernel selection

such as different order polynomials and RBF kernels (omitted

due to space limitations). Of course, we must mention that

these are very preliminary results and a more comprehensive

analysis is required for the optimal selection of classifier,

kernel, feature selection, and extraction.

4. CONCLUSIONS
In this work, we have started developing a general frame-

work for reliable forensic identification using metagenomic

samples. The methods test preprocessing and feature extrac-

tion/selection steps and the approach does not require a phy-

logenetic tree, which is required by the Unifrac distance [5,6].

We also show that while no previous metric can be declared

the indisputable winner, using methods like FLD or mRMR

consistently yields near-best results. The application of ker-

nels for metagenomic data analysis was presented for PCoA.

We have shown that feature extraction and selection via FLD,

PCoA, or mRMR can provide improvement by at least 10%

– a significant improvement – in the ISR of the system using

a multi-class SVM. Future work will include the study of co-

variate shift and domain adaptation between the skin and key-

board samples, which poses additional hurdles for metage-

nomic forensics.
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