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ABSTRACT

Forensic voice comparison (FVC) systems have often involved
manual annotation of usable phonetic units, requiring
substantial human labor. Recent research has shown the
efficacy of automatic methods in FVC, and this paper
investigates automatic phonetic segmentation in FVC systems.
Nasals and vowels were found to contribute the most in terms
of improvements in both the validity and reliability of the
system. Results show that as a function of the duration of the
recognized tokens there is a trade-off in which an improvement
in validity corresponds to a degradation in reliability and vice
versa. An implication is that minimizing the error of
automatically estimated monophone boundaries may not
necessarily result in the best system validity or reliability. A
substantial improvement in log-likelihood-ratio cost (validity)
of 17.02% and in 95% credible interval (reliability) of 5.97%
over the baseline system was possible by fusing baseline scores
with those from nasal and vowel segments.

Index Terms— Forensic Voice Comparison, log-
likelihood ratio cost, 95% credible interval, validity, reliability

1. INTRODUCTION

FVC systems have often employed the acoustic-phonetic
approach, which is characterized by trained phoneticians
identifying and marking sufficient usable tokens of phonetic units
in both the suspect and offender recordings, which are then
subjected to statistical analysis. Forensic science is undergoing a
shift towards a new paradigm, characterized by a quantitative data-
based implementation of the likelihood ratio framework [1],
together with evaluation of the validity and reliability of results. In
this new paradigm, there is an increasing research interest in
automation of FVC systems that could result in reduction in human
labor cost and hence increase in system efficiency. In particular,
recent FVC research [2] has shown the value of combining
automatic systems with acoustic-phonetic systems with
improvements in both validity and reliability (i.e. the confidence
the trier of fact can have in the likelihood ratio presented).

Studies of automatic speaker recognition in the past have
shown that nasals and vowels are effective in system performance.
In particular, liquids and glides, vowels, and nasal vowels and
consonants were found to contain more speaker-specific
information and provide better speaker identification results than

phonetically balanced test utterances [3]. Similar results were
observed from experiments based on Vector Quantization (VQ)
methods [4] and autoregressive vector models [5] respectively.
Frames from syllables whose corresponding word-level speech
recognition transcript included the letter ‘n’ performed better
relative to a baseline system which used all frames [6]. These
studies were performed on the basis of ranking system performance
in terms of accuracy metric without considering precision. Further,
there was no systematic analysis of the effect of errors between the
temporal locations of the true and automatically detected phonetic
tokens on the performance of automatic systems.

In the present paper, the effectiveness of HMM-based phone
recognition for forensic voice comparison is evaluated in terms of
both validity (accuracy) and reliability (precision). The main
motivation for this study is to address the following questions: (1)
In forensic acoustics, manual segmentation has traditionally been
considered as the most accurate method of detecting usable
phonetic tokens. This level of accuracy cannot be reproduced using
current automatic methods. However as an initial step towards
reducing human labor, what is the best automatic method that
could be used in forensic work ? (2) In a typical forensic offender
recording, the duration and availability of phonemes within the
recording is often limited. What are the phones that we should
consider in order to achieve the best possible FVC system
performance under this condition ? (3) How sensitive is a FVC
system to errors in the endpoints of automatically detected
phonetic tokens ?

It must be emphasized that this paper does not aim to replicate
past phone segmentation studies done within the context of
automatic speaker verification; the variation in speaker
discrimination offered by different classes of phonemes is already
established [7, 8, 9]. The context of this work relates to automatic
speech segmentation in a scenario closer to realistic forensic
casework conditions. Since databases replicating such conditions
are still under development, recordings used in the present study
were carefully chosen to adhere to the characteristics (particularly
the gender, language and recording duration) of the suspect and
offender recordings. Further, Detect Error Trade-off (DET) curve
and Equal Error Rate (EER), which originate from the classical
false acceptance/false rejections (FA/FR) performance metrics for
speaker recognition system, are not appropriate within the
likelihood ratio framework, and are replaced by the more
appropriate the log-likelihood-ratio cost (Cllr) and 95% Credible
Interval (95% CI), see [1] and Appendix B of [10].

1853978-1-4673-0046-9/12/$26.00 ©2012 IEEE ICASSP 2012



2. METHODOLOGY

2.1. Automatic Phonetic Segmentation
A Hidden Markov Model Toolkit (HTK) based phone recognizer
was constructed. The TIMIT database of read speech was used to
train and evaluate the phone recognizer.

The phones selected for modeling were the same as those
listed in [11] with some minor modifications. Briefly, there were a
total of 41 phones and 3 TIMIT symbols (ie ‘cl’ (unvoiced
closure), ‘vcl’ (voiced closure) and ‘sil’ (silence)) selected in our
study. Four phones (/ʔ/, /әh/, / / and /y/) were not included, and 17
allophones were combined with their corresponding TIMIT
phoneme symbols. Each of the 41 phones and 3 TIMIT symbols
was then represented by an HMM, implemented using HTK,
containing 3 states with 12 mixtures per state. The HMMs were
trained as right-context-dependent biphone models. Finally,
recognition was carried out via Viterbi search with bigram
language models, producing monophone phonetic transcriptions as
output. The phone recognizer was trained on TIMIT, attaining a
44-class phoneme accuracy of 63% on the TIMIT test database.

2.2. Forensic Voice Comparison System Configuration
The automatic FVC system was the same as that employed in [12].
Briefly, a 512-mixture component Gaussian Mixture Model –
Universal Background Model (GMM-UBM) was used to model
32-dimensional MFCCs (16 static coefficients and 16 delta
coefficients) extracted from 20ms frames overlapped by 10ms. It is
common in speaker recognition to train a Universal Background
Model (UBM) that models the acoustic space of all speakers using
a large database. This is typically followed by maximum a
posteriori (MAP) adaptation to derive the speaker model from the
trained UBM parameters [17]. The UBM can be considered as a
model covering the entire broad acoustic space for all speaker
independent acoustic classes, while MAP adaptation tunes these
acoustic classes based on the speaker dependent training data. For
the unseen acoustic classes in the speaker dependent training
speech, the adapted mixture parameters are copied directly from
the UBM. This will result in an almost zero log-likelihood ratio
(i.e. neither support nor against the hypothesized speaker) in the
recognition phase for those acoustic classes that are unseen in the
training data [17]. While GMM-UBM has been widely used in
automatic speaker recognition, studies in the area of forensic
acoustics have also recently adopted this technique [18].

Feature normalization was performed via cumulative
distribution mapping and no channel or session compensation
technique was applied. Prior to phone recognition, an energy-
based Voice Activity Detector (VAD) was applied to remove
portions of the recording which the speaker was not talking [13].

2.3. Background, development, and test databases
The UBM was trained from the 750 longest recordings of US
English male speakers from the NIST SRE 2006 8conv database
The total number of speakers was 101, with 4 to 8 recordings per
speaker. Development data used to train calibration and fusion
weights consisted of two non-contemporaneous recordings (with
speech-active duration ranging from 84s to 131s with a median of
110s) of each of 32 male speakers of US English from the NIST
SRE 2008 8conv database. Test data consisted of four non-
contemporaneous recordings (with speech-active duration ranging
from 84s to 159s with a median of 109s) of 100 male speakers of

US English from NIST 2008 8conv. The database is described in
more detail in [12], however it should be emphasized that
recordings for the background, development and test databases
were chosen to approximate the characteristics of forensic
casework, since there is currently no large database of this kind
available. Weights for logistic regression calibration and fusion
[14, 15, 16] were calculated using the scores derived from the
development data, and these weights were then used to calibrate
and fuse scores from the test data. The pooled procedure for
calculating the weights was adopted (see [12]).

2.4. Calculation of validity and reliability
The validity and reliability (accuracy and precision) of the FVC
systems were evaluated using the log-10-likelihood-ratio cost (Cllr)
and a parametric estimate of the log-10-likelihood-ratio 95%
credible interval (95% CI) respectively, see [1].

3. RESULTS

3.1. Phonetic segmentation results
A scatter plot of reliability versus validity for each system is
displayed in Figure 1. Three infrequently occurring phones: /p/, /ʧ/
and /θ/ and three TIMIT symbols: ‘cl’ (unvoiced closure), ‘vcl’
(voiced closure) and ‘sil’ (silence) have not been included.

On the basis of test data, eight phones performed relatively
well in terms of validity and were selected for fusion with the
baseline system. These phones were /ɛ/, /u/, /ʌ/, /m/, /ɪ/, /n/, /i/ and
/ɾ/ as highlighted in Figure 1. Note that the results presented in
Figure 1 are those for the test data and not the development data.
The baseline result was then calculated for validity and reliability
using a common subset of only those utterances containing all
eight phones. Due to the large number of possible fused
combinations from these eight individual phones, four sub-groups
of phones are presented, for brevity. Results show that an
improvement over the baseline in validity or reliability, or
frequently both, can be gained by fusing combinations of sub-
groups {/ɛ/, /u/, /ʌ/, /m/}, {/ɪ/, /n/}, {/i/} and {/ɾ/} with the baseline
system, and Table 2 lists some of the more promising results. The
best performing overall system was found by fusing the baseline
system with /ɪ/ and /n/, which gave an improvement in Cllr of
17.02% and improvement in the 95% CI of 5.97% as depicted in
Figure 1. Fusing baseline system with /ɛ/, /ʌ/ and /m/, gave the best
improvement in the 95% CI of 9.05%, however with only a small
improvement in Cllr of 2.27%.

3.2. Effect of phone boundary error
An evaluation of phone recognizer endpoint accuracy was made,
using TIMIT’s manual annotation of phoneme boundaries. A basic
algorithmic search was developed to match each of the true labels
to the recognized label, such that the overlap between the
recognized label and true label was greater than 50% of the
duration of the true label, and the recognized and true labels
matched. Given that the phone recognizer endpoints contain errors,
it is of interest to evaluate the minimum endpoint error achievable
if the recognized tokens are adjusted to have shorter or longer
duration. An experiment was performed on the TIMIT test
database by adjusting (shrinking/expanding) every recognized
label by a fixed percentage of its duration. The start and end
boundary time differences (recognized versus true labels) at each
adjustment were then captured in terms of Root Mean Square Error
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(RMSE). The lowest RMSE value for start and end boundaries (i.e.
closest to manual annotations of nasal boundaries) were observed
to be at 90% duration and 80% duration respectively.
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Figure 1: Reliability (95% CI) versus validity (Cllr) plot for all
individual phones. The baseline system was calculated using a
common subset of only those utterances containing all the eight
phones highlighted in dashed red.

Table 1: Validity (Cllr) and reliability (95% CI) of selected fused
systems using the eight best phones with the baseline system.

Fusion Cllr 95% CI
Baseline 0.132 1.492
Baseline + ɛ + ʌ 0.130 1.361
Baseline + ɛ + ʌ + m 0.129 1.357
Baseline + ɪ 0.114 1.420
Baseline + n 0.112 1.438
Baseline + ɪ + n 0.110 1.403
Baseline + i 0.125 1.466

In particular, we were interested to evaluate how the FVC
system performs if similarly each of the recognized labels in the
NIST database shrinks (or expands) by a fixed amount, denoting
different types of phone recognition error. The validity and
reliability of the FVC system based on shrinking/expanding of the
recognized phone /n/ are shown in Figure 2. Each of the
percentages indicates the proportion of token’s duration that was
used for analysis with 80-90% probably corresponding to the
minimum endpoint error. It should be noted that the phone
recognizer was trained on TIMIT database (clean read speech), and
it was applied on the FVC system that is based on NIST database
(telephone speech with noise). Since these are two databases of
different nature, we can only speculate that the 80-90% duration
may be corresponding to the minimum endpoint error in the FVC
system based on NIST database. The results in Figure 2 indicate
that shrinking/expanding the token duration creates a trade-off
between validity and reliability. In particular,
overestimating/underestimating the recognized token’s length
gives improvement in validity/reliability with a corresponding

degradation in reliability/validity. Similar trade-off results were
observed for other phones.

In Figure 2, the system with the best validity was observed at
the longest token duration of 180%, while the system with the best
reliability was observed at the shortest token duration of 50%. It
should be noted that 50% corresponds to the lowest possible
setting without insufficient frames for adapting the GMMs from
tokens of phone /n/, while 180% was arbitrarily determined and
could be further extended. An additional step was performed to
fuse each of these best results with the baseline system as shown in
Table 3. Relative to the fusion of baseline with 100% (i.e. without
adjustment), fusion of baseline with the longest duration of 180%
gave an improvement in validity while fusion of baseline with the
shortest duration of 50% gave an improvement of reliability.
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Figure 2: Reliability (95% CI) versus validity (Cllr) plot for various
amounts of adjustment made to the recognized start and end
boundary times of phone /n/ by shrinking/expanding each token as
a proportion of its duration (labeled in percentage terms and
colored in blue). 100% denotes the original recognized tokens
without any adjustment. Fusion combinations based on different
adjustment percentages with the baseline were colored in red.

Table 2: Validity (Cllr) and reliability (95% CI) of fusion
combinations based on different adjustment percentages of FVC
system based on phone /n/ with the baseline system.

Fusion Cllr 95% CI
Baseline 0.132 1.492
Baseline + 50% 0.122 1.434
Baseline + 100% 0.112 1.438
Baseline + 180% 0.105 2.101

4. DISCUSSION AND CONCLUSION

Results from our phone-based study have shown that scores from a
system that automatically selects and models phones can, when
fused with the baseline scores, yield improvement in FVC system
validity and reliability, as compared with the baseline system,
which employs indiscriminate use of all post-VAD speech frames.
In particular, fusion of /ɪ/ and /n/ with a baseline system can yield a
substantial increase in system validity and reliability. It may be the
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case that /n/ has relatively little allophonic variability compared
with many other phonemes, which would result in low within-
speaker variability and good performance in a FVC system. All
systems based on individual phones without fusion with the
baseline system had poorer validity than the baseline system (Cllr
was higher), but (with one exception) their reliability was better
(the 95% CI was narrower).

It should be pointed out that the data used for training the
UBM in the present study, representing the alternative hypothesis,
and for testing the systems, were not completely forensically
realistic. Selection of speakers whose recordings were included in
these data was restricted to US English male speakers, inevitably
containing recordings of many pairs of speakers who sound quite
unlike each other and who would never be subjected to forensic
voice comparison. In practice recordings should be restricted to
those which to a lay person (such as a police officer) sound
sufficiently similar to the offender recording that they would think
it is appropriate to submit them for forensic analysis. Further, in
the current study, all post-VAD frames were used to train the
UBM. To be forensically realistic, phonetic tokens within each of
the UBM recordings detected on the basis of the phone recognizer
should be used in training a phone-dependent UBM.

A trade-off between validity and reliability was observed, as
the durations of recognized tokens were varied. A speculative
explanation for this may be that by increasing the number of
frames within each token, frames from neighbouring speaker-
discriminating phones (most likely a vowel if the recognized token
is the phone /n/) are included in the analysis, and these phones help
to improve system validity. On the contrary, by decreasing the
number of frames within each token, we are restricted to strictly
only take frames within each token, resulting in high system
reliability. An implication is that one may choose to make an
adjustment to the recognized segments by effectively
increasing/decreasing the number of frames used per token to
produce an improvement in validity/reliability, with an
accompanying slight degradation in reliability/validity.

Assuming it is possible in a phone recognizer, achieving the
minimum endpoint error during token segmentation does not lead
to the best validity or reliability for the FVC system based on the
NIST database, but rather represents a compromise between these
two metrics. As future work, a manually labeled forensic speech
database (currently under development) could be used to validate
our experimental observation of the trade-off between validity and
reliability, and such a database could also be used to build a more
forensically realistic phone recognizer.
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