
PRIVACY-PRESERVING SPEAKER VERIFICATION AS PASSWORD MATCHING

Manas A. Pathak and Bhiksha Raj

Carnegie Mellon University, Pittsburgh, PA, USA
{manasp,bhiksha}@cs.cmu.edu

ABSTRACT

We present a text-independent privacy-preserving speaker verifica-
tion system that functions similar to conventional password-based
authentication. Our privacy constraints require that the system does
not observe the speech input provided by the user, as this can be
used by an adversary to impersonate the user in the same system or
elsewhere.

We represent the speech input using supervectors and apply lo-
cality sensitive hashing (LSH) to transform these into bit strings,
where two supervectors, and therefore inputs, are likely to be sim-
ilar if they map to the same string. This transformation, therefore,
reduces the problem of identifying nearest neighbors to string com-
parison. The users then apply a cryptographic hash function to the
strings obtained from their enrollment and verification data, thereby
obfuscating it from the server, who can only check if two hashed
strings match without being able to reconstruct their content. We
present execution time and accuracy experiments with the system on
the YOHO dataset, and observe that the system achieves acceptable
accuracy with minimal computational overhead needed to satisfy the
privacy constraints.

Index Terms— Privacy, Speaker Verification, LSH

1. INTRODUCTION

Speech being a unique characteristic of an individual is widely used
as the biometric of choice in authentication systems. In this paper
we investigate a text-independent speaker verification system that
can authenticate while maintaining privacy over the speech data.

We consider a client-server model, where the speaker verifica-
tion system is the server, and the user executes a client program on a
network-enabled computation device such as a computer or a smart-
phone. Speaker verification proceeds in two phases: enrollment,
where the user submits a few speech samples to the system, and ver-
ification where the user submits a test sample and the system makes
a accept/reject decision based on its similarity to the enrollment data
for that user. Our primary privacy constraint is that the verification
system should not be able to observe the speech samples provided
by the user both during the enrollment and verification steps. This
is important as the same speech samples can potentially be used to
verify the user in another authentication system. A speaker verifica-
tion system might be compromised by an adversary that gains access
speech samples from the internal storage of the system for this pur-
pose. Similarly, the system itself might be made to pose as a front
to phish speech data from the unaware users. To prevent this, we
require that the speech samples should be transformed by the user
via cryptographic operations so that they are irreversibly obfuscated
from the system.

This work was supported by the NSF grant 1017256.

Our secondary privacy constraint is related to the computation
device that is employed to the user in the verification process. We
assume the user to be honest during the enrollment step, as it is in
the user’s privacy interest to be so. In the verification step, however,
the user’s computation device may be stolen or compromised by an
adversary and can be used to impersonate as the user. To prevent
this, we require that no data that may allow the adversary to authen-
ticate itself in place of the user should be stored on the device. What
we do not consider as a privacy violation is an attempt to directly
trick an authentication system. An imposter might try to imitate a
user’s voice or use a recording to produce speech similar to the user.
Although these attacks on speaker verification system do pose a crit-
ical threat, we consider them as a security issue, as the privacy of the
original user’s speech is not compromised in the ways mentioned
above. Similarly, a verification system may arbitrarily deny a legit-
imate user despite having submitted a reasonably authentic sample
of her voice. Again, for the same reasons we do not consider this as
a privacy violation.

Pathak and Raj [1] introduce the problem of privacy preserving
speaker verification and presented a solution using adapted GMMs.
In this work, secure multiparty computation (SMC) protocols for
adaptation and verification were developed using homomorphic en-
cryption to enforce the privacy requirements. The main drawback
of this approach was the huge computational overhead as compared
with the non-private speaker verification system, which can make it
impractical to be used in a realistic setting. This computation over-
head is dependent on the length of the speech sample, requiring mul-
tiple minutes to hours for processing a few seconds of speech.

In this paper we propose a method for speaker verification that
will require a minimal computation overhead needed to satisfy the
privacy constraints. The central aspect of our approach is to reduce
the speaker verification task to string comparison. Instead of using
the UBM-GMM approach, we convert the utterances into supervec-
tor features [2] that are invariant with the length of the utterance. By
applying the locality sensitive hashing (LSH) transformation [3] to
the supervectors, we reduce the problem of nearest-neighbor classi-
fication into string comparison. It is very efficient to perform string
comparison with privacy, similar to a conventional password system.
By applying a cryptographic hash function (e.g., SHA-256), we con-
vert the LSH transformation to an obfuscated string which the server
cannot use to gain information about the supervectors, but is still
able to compare if two strings are identical. This one-way transfor-
mation preserves the privacy of the speech utterances submitted by
the user, and is significantly more efficient to execute as compared
to applying homomorphic encryption.

We emphasize that the main goal of this paper is not to develop
a speaker verification algorithm that achieve higher accuracy. We
are principally interested in developing an efficient speaker verifi-
cation system that satisfies the same privacy constraints as [1] but
with a minimal computational overhead and while achieving feasible

1849978-1-4673-0046-9/12/$26.00 ©2012 IEEE ICASSP 2012

accuracy. Using the LSH functions defined over Euclidean and co-
sine distances, we show that our system achieves an equal error rate
(EER) of 11.86% on the YOHO dataset, while requiring only a few
milliseconds of computational overhead. We, nevertheless, consider
this result as a proof of concept; we believe the EER can be further
improved by using more discriminative speech features, better qual-
ity training data, and supervectors computed over a larger number
of Gaussian components, all while utilizing the same private string
comparison framework. Although UBM-GMM and SVMs trained
over supervectors are known to supersede our current accuracy, our
proposed algorithm significantly supersedes the computational over-
head of the privacy-preserving variants of these algorithms.

The reminder of the paper is organized as follows. We present
an overview of the supervector construction and locality sensitive
hashing in Section 2. We discuss our privacy model in detail along
with the privacy preserving enrollment and verification protocols in
Section 3. We present the results of experiments with the protocols
for accuracy and execution time on the YOHO dataset in Section 4.

2. PRELIMINARIES

2.1. Speaker Verification using Supervectors

We briefly summarize the supervector method for speaker verifica-
tion introduced by Campbell et al. [2].

Adapted Gaussian mixture models (UBM-GMM) [4] is a well
established method for performing speaker verification. A univer-
sal background model (UBM) is trained on a large and diverse set
of speech samples, and is adapted using enrollment data from indi-
vidual speakers by maximum a posteriori estimation to obtain the
speaker models. A given test utterance is evaluated over both the
UBM and the speaker model and the verification decision is made
accordingly.

Campbell et al. [2] extend this approach by constructing a su-
pervector (SV) for each utterance by performing the MAP adapta-
tion of the UBM over that utterance and concatenating the means
of the adapted model. Given an adapted model λ with M -mixture
components of the form

P (xt|λ) =
M∑

j=1

wjN (xt;μj ,Σj) ,

where xt is a frame in the utterance x, μj and Σj are mean vec-
tor and covariance matrices of the j th component respectively, the
supervector s is given by s = (μ1 ‖ μ2 ‖ · · · ‖ μM).

This supervector is then used as a feature vector instead of the
original utterance. The verification is performed using an binary sup-
port vector machine (SVM) classifier for each user trained on super-
vectors obtained from enrollment utterances and impostor data as
the opposite class. As the classes are usually not separable in the
original space, [2] also provide a linear kernel approximating KL-
divergence between the two GMMs that is shown to achieve higher
accuracy.

Instead of using SVMs with kernels, in this paper we use k-
nearest neighbors trained on supervectors as our classification algo-
rithm. The reasons for this choice are that, firstly, k-nearest neigh-
bors also perform classification with non-linear decision boundaries
and are shown to achieve accuracy comparable to SVMs with ker-
nels [5]. Secondly, by using the LSH transformations we discuss
below, it is possible compute approximate k-nearest neighbors by
performing string comparison.

2.2. Locality Sensitive Hashing

Locality sensitive hashing (LSH) [3, 6] is a commonly used tech-
nique for performing efficient approximate nearest-neighbor search.
An LSH function L[·] proceeds by applying a random transformation
to a data vector x by projecting it to a vector L[x] in a lower dimen-
sional space, which we refer to as the LSH key or bucket. A set of
data points that map to the same key are considered as approximate
nearest neighbors.

As a single LSH function does not group the data points into
fine-grained clusters, we use a hash key obtained by concatenat-
ing the output of k LSH functions. This k-bit LSH function
L[x] = L1(x) · · ·Lk(x) maps an d-dimensional vector into a
k-length string. Additionally, we use l different LSH keys that are
computed over the same input to achieve better recall. Two data
vectors x and y are said to be neighbors if at least one of their l keys,
each of length k, matches exactly.

A family of LSH functions is defined for a particular distance
metric. A hash function from this family has the property that data
points, that are close to each other as defined by the distance metric,
are mapped to the same key with high probability. Although there
exist LSH constructions for a variety of distance metrics, including
arbitrary kernels [7], in this paper we consider LSH for Euclidean
distance (E2LSH) [8] and cosine distance [9] as they are simple to
implement and are comparatively more efficient. The LSH construc-
tion for Euclidean distance with k random vectors transforms a d-
dimensional vector into a vector of k integers, each of which is a
number between 0–255. The LSH construction for cosine distance
with k random vectors similarly transforms the given data vector into
a binary string of length k.

3. PRIVACY PRESERVING SPEAKER VERIFICATION

3.1. System Architecture & Privacy Model

The speaker verification proceeds in two distinct phases: enrollment,
where each user submits the speech data to the system, and verifi-
cation, where a user submits a test utterance to the system which
computes a yes/no decision as output. As discussed in Section 2.1,
the users convert their speech utterances into supervectors and then
apply l LSH functions. To facilitate this, the system provides with
a UBM trained on publicly available data along with the random
feature vectors constituting the LSH functions. There is no loss of
privacy in publishing these elements, as none of these depend on the
speech data belonging to the user.

Our first privacy constraint requires that the system should not
be able to observe both the enrollment data and the test input pro-
vided by the user. Although LSH can be considered as dimension-
ality reduction, it is inherently non-privacy preserving. Due to the
locality sensitive property of LSH, it is possible to reconstruct the
input vector by observing a sufficient number of LSH keys obtained
from the same vector. We satisfy this privacy constraint by requiring
the users to apply a cryptographic hash function H[·] to the LSH
computed over the supervector s, which we denote by H[L(s)].
Cryptographic hash functions satisfy the property that they can be
computed efficiently, i.e., in polynomial time on all inputs, but are
computationally hard to invert, i.e., there is no feasible algorithm to
obtain the input L(s) for a given output H[L(s)]. Cryptographic
hash functions, such as SHA-256, MD5, are orders of magnitude
faster to compute as compared to homomorphic encryption, such as
the Paillier cryptosystem which is used in [1].

1850

User 1
salt: r1

s′ → H[L(s′) ‖ r1]

System

Match H[L(s′) ‖ r1]
to enrollment data

{H[L(s1) ‖ r1], H[L(s2) ‖ r2],
H[L(s3) ‖ r3], H[L(s4) ‖ r4]}

User 1, H[L(s′) ‖ r1]

accept/reject

Fig. 1. System Architecture. For user 1, test utterance supervector: s′, salt: r1. Although only one instance of LSH function L is shown, in
practice we use l different instances.

Salted Cryptographic Hash

As the possible values for LSH keys lie in a relatively small set by
cryptographic standards, 256k for k-bit Euclidean LSH and 2k for
k-bit cosine LSH, it is possible for the server to obtain L(s) from
H[L(s)] by applying brute-force search. To make this attack infea-
sible, we vastly increase the domain of the hash function H[·] by
concatenating the LSH key with a long random string ri unique to
the user i, which we refer to as the salt.1 By requiring the user to
keep the salt private and unique to each system, this also gives us
the additional advantage of the cryptographically hashed enrollment
data being rendered useless to an adversary. An adversary who has
gained access to the system data will be unable to use the hashed
enrollment data while trying to impersonate the user in another sys-
tem. It is important to note that applying cryptographic hash func-
tion with salting has no effect on verification accuracy. If two LSH
keys L(s1) and L(s2) match, their respective hashes salted with r:
H[L(s1) ‖ r] and H[L(s2) ‖ r], would also match exactly, and
vice-versa.

Our secondary privacy constraint is that an adversary should not
be able to impersonate the user by having access to a compromised
or stolen computation device belonging to that user. To satisfy this,
we require the device to have no record of the enrollment samples
and the previously used test samples. Although the salt ri is stored
on the device, it does not result in any loss of privacy by itself. The
only point of failure in the system is when both the user device and
the server data is compromised by the same adversary, who can then
use the salt and the cryptographically hashed enrollment data to ob-
tain the original LSH keys via brute-force search.

3.2. Protocols

We present the details of the enrollment and verification protocols
below.

A. Enrollment Protocol
Each user is assumed to have a set of enrollment utterances
{x1, . . . , xn}. The users also obtain the UBM and the l LSH
functions {L1(·), . . . , Ll(·)}, each of length k-bit from the
system. Each user i generates the random 80-bit salt string ri.

For each enrollment utterance xj , user i:

(a) performs adaptation of xj with the UBM to obtain super-
vector sj .

(b) applies the l LSH functions to sj to obtain the keys
{L1(sj), . . . , Ll(sj)}.

1In practice, random strings of size 80-bits are used as salts.

(c) applies the cryptographic hash function salted with ri to
each of these keys to obtain
{H[L1(sj) ‖ r1], . . . , H[Ll(sj) ‖ r1]}, and sends them
to the server.

B. Verification Protocol
For a test utterance x′, user i:

i. performs adaptation of x′ with the UBM to obtain supervec-
tor s′.

ii. applies the l LSH functions to s′ to obtain the keys
{L1(s

′), . . . , Ll(s
′)}.

iii. applies the cryptographic hash function salted with ri to
each of these keys to obtain {H[L1(s

′) ‖ r1], . . . , H[Ll(s
′) ‖

r1]}, and sends it to the server.

iv. The server compares the hashed keys for the test utterance
with the hashed keys of the enrollment utterances, and
counts the number of matches. Depending on whether this
number is above or below a threshold, the server makes an
accept/reject decision.

As discussed in Section 2.2, we consider two vectors to be
matched if any one of their LSH key matches. The server calibrates
the acceptance threshold by experimenting with match counts on
held-out data.

While the above enrollment and verification protocols only con-
sider enrollment data belonging to the speaker, it is also possible
to include imposter data in the enrollment step. The user can simi-
larly obtain supervectors from publicly available imposter data, ap-
ply LSH and the salted cryptographic hash function, and submit the
hashed keys to the server. In the verification protocol, the server
can match the test input separately to the hashed keys belonging to
both the user enrollment and imposter sets, and make the decision
by comparing the two scores. In Section 4, we observe that there is
an improvement in performance by including the imposter data.

The server does not observe any LSH key before a salted cryp-
tographic hash function is applied to it. Apart from the salt, the user
does not need to store any speech data on its device. The enrollment
and verification protocols, therefore, satisfy the privacy constraints
discussed above.

4. EXPERIMENTS

We experimentally evaluate the privacy preserving speaker verifica-
tion protocols described above for accuracy and execution time. We
perform the experiments on the YOHO dataset [10].

1851

4.1. Accuracy

We use Mel-frequency cepstral coefficient (MFCC) features aug-
mented by differences and double differences, i.e., representing
a recording x by a sequence of 39-dimensional feature vectors
x1, . . . , xT . Although in practice the UBM is supposed to be
trained on publicly available data, for simulation, we trained a UBM
with 64 Gaussian mixture components on a random subset of the
enrollment data belonging to all users. We obtained the supervectors
by individually adapting all enrollment and verification utterances
to the UBM.

Table 1. Average EER for the two enrollment data configurations
and three LSH strategies: Euclidean, cosine, and Combined (Eu-
clidean & cosine).

Enrollment: Only Speaker
Euclidean Cosine Combined

15.18% 17.35% 13.80

Enrollment: Speaker & Imposter
Euclidean Cosine Combined

15.16% 18.79% 11.86%

We use equal error rate (EER) as the evaluation metric. We ob-
served that the lowest EER was achieved by using l = 200 instances
of LSH functions each of length k = 20 for both Euclidean and co-
sine distances. A test utterance considered to match an enrollment
utterance if at least one of their LSH keys matches. The score for
a test utterance is given by the number of enrollment utterances it
matched. We report the average EER for different speakers in Ta-
ble 1. We observe that LSH for Euclidean distance performs better
than LSH for cosine distance. We also used combined LSH scores
for Euclidean and cosine distances and found that this strategy per-
formed the best. This can be attributed to the fact that different dis-
tance measures find approximate nearest neighbors in different parts
of the feature space. We hypothesize that the EER can be further
improved by combining LSH functions defined over an ensemble of
distance metrics. We leave this direction for future work.

We also consider two configurations where only the enrollment
data of the speaker was used, and where imposter data chosen ran-
domly from the enrollment data of other speakers was used along
with the enrollment data of the speaker. In the latter experiment, we
compare the difference between the number of utterances matched
by the test utterance in the enrollment and the imposter set. We ob-
served that using imposter data achieved lower EER when using the
combined scores for both the distances.

Although it is known that conventional speaker verification ap-
proaches like UBM-GMM achieve higher accuracy, we consider the
current performance of our system (EER 11.86%) as indicative of
the feasibility of our approach. We believe this accuracy can be sig-
nificantly improved by using more discriminative speech features,
UBM trained over better quality training data and 1024 mixture com-
ponents, and the combining LSH for multiple distance measures as
discussed above. All these modifications can be directly included in
the current framework while still having a minimal computational
overhead for privacy.

4.2. Execution Time

As compared to a non-private variant of a speaker recognition sys-
tem based on supervectors, the only computational overhead is in

applying the LSH and salted cryptographic hash function. For a
64×39 = 2496-dimensional supervector representing a single utter-
ance, the computation for both Euclidean and cosine LSH involves
a multiplication with a random matrix of size 20 × 2496 which re-
quires a fraction of a millisecond. Performing this operation 200
times required 15.8 milliseconds on average.2

The Euclidean and cosine LSH keys of length k = 20 require
8 × 20 bits = 20 bytes and 20 bits = 1.6 bytes for storage respec-
tively. Using our C++ implementation of SHA-256 cryptographic
hashing algorithm based on the OpenSSL libraries [11], hashing 200
instances of each of these keys in total required 28.34 milliseconds
on average. Beyond this, the verification protocol only consists of
matching the 256-bit long cryptographically hashed keys derived
from the test utterance to those obtained from the enrollment data.

In this way, the enrollment and verification protocols add a very
small overhead to the non-private computation. This is significantly
smaller than the overhead of secure multiparty computation ap-
proaches using homomorphic encryption such as the UBM-GMM
verification system of Pathak and Raj [1], while satisfying the same
privacy constraints.

5. REFERENCES

[1] Manas Pathak and Bhiksha Raj, “Privacy preserving speaker
verification using adapted GMMs,” in Interspeech, 2011.

[2] William M. Campbell, Douglas E. Sturim, Douglas A.
Reynolds, and Alex Solomonoff, “SVM based speaker veri-
fication using a GMM supervector kernel and NAP variability
compensation,” in ICASSP, 2006.

[3] Piotr Indyk and Rajeev Motwani, “Approximate nearest neigh-
bors: Towards removing the curse of dimensionality,” in ACM
Symposium on Theory of Computing, 1998, pp. 604–613.

[4] Douglas A. Reynolds, Thomas F. Quatieri, and Robert B.
Dunn, “Speaker verification using adapted gaussian mixture
models,” Digital Signal Processing, vol. 10, no. 1-3, pp. 19–
41, 2000.

[5] Johnny Mariéthoz, Samy Bengio, and Yves Grandvalet, Kernel
Based Text-Independent Speaker Verification, John Wiley &
Sons, 2008.

[6] Alexandr Andoni and Piotr Indyk, “Near-optimal hashing
algorithms for approximate nearest neighbor in high dimen-
sions,” Communications of the ACM, vol. 51, pp. 117–122,
2008.

[7] Brian Kulis and Kristen Grauman, “Kernelized locality-
sensitive hashing for scalable image search,” in ICCV, 2009,
pp. 2130–2137.

[8] Mayur Datar, Nicole Immorlica, Piotr Indyk, and Vahab S.
Mirrokni, “Locality-sensitive hashing scheme based on p-
stable distributions,” in ACM Symposium on Computational
Geometry, 2004, pp. 253–262.

[9] Moses Charikar, “Similarity estimation techniques from
rounding algorithms,” in ACM Symposium on Theory of Com-
puting, 2002.

[10] Joseph P. Campbell, “Testing with the YOHO CD-ROM voice
verification corpus,” in ICASSP, 1995, pp. 341–344.

[11] “OpenSSL,” http://www.openssl.org/docs/
crypto/bn.html.

2We performed all the execution time experiments on a laptop running
64-bit Ubuntu 11.04 with 2 GHz Intel Core 2 Duo processor and 3 GB RAM.

1852

