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ABSTRACT

One common form of tampering in digital audio signals is

known as splicing, where sections from one audio is inserted

to another audio. In this paper, we propose an effective splic-

ing detection method for audios. Our method achieves this by

detecting abnormal differences in the local noise levels in an

audio signal. This estimation of local noise levels is based on

an observed property of audio signals that they tend to have

kurtosis close to a constant in the band-pass filtered domain.

We demonstrate the efficacy and robustness of the proposed

method using both synthetic and realistic audio splicing forg-

eries.

Index Terms— Digital Forensics, Audio Splicing, Local

Noise Level Estimation

1. INTRODUCTION

Digital audios have become ubiquitous with the popularity of

the internet and portable digital devices such as personal mu-

sic players and smartphones. In the meanwhile, rapid devel-

opments of low-cost and sophisticate editing software make

the modification of audio file much easier for untrained users.

There have been several recent cases of audio forgery draw-

ing the public’s attention, including the alleged tampering of

the recorded audio of actor Mel Gibbson [7], and the contro-

versy over the authenticity of the audio files claimed to be the

voices of Osama Bin Laden [8]. The increasing number of

forged audios calls for more effective tools for the authentica-

tion and forgery detection for digital audios.

In this paper, we describe a new method that can be ap-

plied to detect a common form of tampering in digital audio

signals known as splicing, where sections from one audio are

inserted into another audio. Our method achieves this by de-

tecting abnormal differences in the local noise levels in an

audio signal. The estimation of local noise levels is based

on an observed property of audio signals – they tend to have

kurtosis close to a constant in the band-pass filtered domain.

The variance of noise in the audio signal is estimated by min-

imizing an objective function that has a closed-form optimal

solution. We examine the noise level inconsistency within the

audio file, which are used to detect the location and length

of suspicious audio clips. We also report the robustness and

effectiveness of our method using both synthetic and realistic

audio forgeries with splicing tampering.

2. PREVIOUS WORK

Digital watermarking may be used to protect the authenticity

of audio [3, 11]. However, to apply digital watermarking, it

is necessary to have particular hardware/software support that

most non-professional digital audios recording devices lack.

Recent years, several active forensic detection methods

for audio signals have been developed [4, 5, 6, 12]. For in-

stance, acoustic device, e.g. microphones, are identified [4, 5]

by extracting background features of audio stream. Simi-

lar forensic tool based on the amount of sound reverberation,

which uniquely decides the shape and composition of a room

where the audio signal was recorded, is proposed in [6]. In

another work [12], the digital tampering in MP3 audio data is

identified by checking the inconsistency of frame offsets.

However, most of these methods assume some knowledge

of the recording device or the specific file format. On the other

hand, we may obtain more general forgery detection methods

using common statistical properties of digital audios indepen-

dent of specific recording devices or file formats.

In [10], local noise levels are estimated by computing the

second and fourth moments at each local signal block. But the

method assumes that the kurtosis values of the original signal

are known, which is hard to satisfy in practice. Our proposed

work is most closely related with the work in [13], where the

optimal values for the kurtosis of the original clean signal and

the variance of the noise are sought simultaneously by min-

imizing an objective function, assuming scale invariance of

signal kurtosis. In contrast, our method has an efficient im-

plementation based on a closed-form solution, and can be ex-

tended to estimate local noise levels.

3. METHOD

3.1. Kurtosis Constancy

The audio kurtosis κ, which represents the peakedness of the

distribution of the signal sampling values x, is defined as κ =
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Fig. 1. Kurtosis profiles - kurtosis values (blue line) as a function
of the component number, or frequency, of the 63 DCT AC filters for
an audio from the TIMIT database. The red line corresponds to the
mean of the kurtosis values, and the green lines correspond to the
mean plus/minus standard deviation respectively.

μ4

(σ2)2 -3, where σ2 and μ4 are the second and fourth order cen-

tral moments of x. Fig.1 illustrates the kurtosis values of the

DCT responses of an audio selected from the TIMIT dataset

[1], a high quality clean corpus of phonemically and lexi-

cally transcribed speech of American English speakers. More

specifically, the audio is convolved with 63 DCT AC filters

to produce the responses, where the kurtosis values of these

response signals are computed and sorted. It can be observed

from Fig.1 that, except for a few outliers, most of the kurto-

sis values fall into a narrow range around their mean value1.

Based on this observation, we describe an efficient method to

estimate the variance of noise added to clean audio signals.

3.2. Global Noise Level Estimation

As the basis of our audio splicing detection method, we first

introduce a global noise estimation algorithm for audio sig-

nals based on the near constancy property of their kurtosis

values in DCT domain. Let us denote a clean audio signal x,

and y = x + z as the result of x contaminated by a additive

white Gaussian noise (AWGN) z of unknown variance σ2.

Our goal is to estimate σ2 from y. To this end, we produce the

response signal yk by the convolution of y with the kth filter

from the 1×N DCT basis. We further denote κk, κ̃k, and σ̃2
k as

the kurtosis of xk and yk, and the variance of yk, respectively.

The kurtosis of xk and yk, and the variance of yk and σ2 are

related as [9]: κ̃k = κk

(
σ̃2

k−σ2

σ̃2
k

)2
. Assume the marginal distri-

butions of band-pass filter responses, xk has super-Gaussian

property, i.e. κk > 0, we have κ̃k > 0 due to the fact that

σ̃2
k > σ

2. We can further take square root on the equation to

obtain: √
κ̃k =

√
κk

⎛⎜⎜⎜⎜⎝ σ̃
2
k − σ2

σ̃2
k

⎞⎟⎟⎟⎟⎠ . (1)

Assuming κk are approximately constant across different DCT

bands, we can estimate the kurtosis of the audio signal κ and

1Similar observations can be made for other types of band-pass linear

filters.
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Fig. 2. Illustration of local noise level estimation on a noise cor-
rupted audio signal.

its variance σ2 by by minimizing their squared difference:

L
(√
κ, σ2
)
=

N2∑
k=1

⎛⎜⎜⎜⎜⎝√κ̃k − √κ +
√
κσ2

σ̃2
k

⎞⎟⎟⎟⎟⎠
2

. (2)

Eq.(2) has a closed-form optimal solution, as:

√
κ =

〈√
κ̃k
〉

k

〈
1

(σ̃2
k )2

〉
k
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〈 √
κ̃k
σ̃2
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k
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(3)
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1
σ̃2
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〉
k

− 1√
κ

〈√
κ̃k
〉

k〈
1
σ̃2

k

〉
k

, (4)

where we use 〈·〉k as a shorthand notation for the average over

different band-pass filters.

It should be noted that even though we assume AWGN,

this is not as restricted as it seems, as very non-Gaussian in-

dependent noise in the time domain will mix in to be Gaussian

noise in the filter domain due to the central limit theorem and

noise independence.

3.3. Local Noise Level Estimation

The global noise level estimation method can be further ex-

tended for the estimation of locally varying noise levels in

audio signals. Instead of straightforward implementation us-

ing sliding estimation windows, we propose a more efficient

local noise estimation algorithm based on dynamic program-

ming. In particular, we term the integral vector of an audio

signal x, denoted as A(x), is an audio signal of the same size

as x, but its value at index i is the sum of all sampling values

of x in the range of [1, i]. The integral vector can be efficiently

1842



constructed, and it can be used to compute the sum in any sub-

interval [i, i+ I] with subtraction operation asA(x)i+I −A(x)i.

Specifically, we can efficiently compute the kth order spatial

statistics for a time interval Ω = [i, i + I], as:

μk(xΩ) =
1

Ω

⎡⎢⎢⎢⎢⎢⎢⎢⎣A(x ◦ · · · ◦ x︸�����︷︷�����︸
k times

)i+I −A(x ◦ · · · ◦ x︸�����︷︷�����︸
k times

)i

⎤⎥⎥⎥⎥⎥⎥⎥⎦ , (5)

where ◦ represents point-wise multiplication. Furthermore,

the local variance and kurtosis of a surrounding time interval

Ω of each sampling location can be computed as:

κ(xΩ) =
μ4(xΩ) − 4μ3(xΩ)μ1(xΩ) + 6μ2(xΩ)μ1(xΩ)2 − 3μ1(xΩ)4

(
σ2(xΩ)

)2 −3

(6)

σ2(xΩ) = μ2(xΩ) − (μ1(xΩ))2. (7)

We can substitute the results of Eqs.(6) and (7) into Eqs.(3)

and Eqs.(4) to find the local noise level in the audio signal.

Shown in Fig.2 is the pipeline of the proposed local noise

level estimation method, which can be further employed for

audio forgery detection.

4. EXPERIMENTS

In this section, we first test the performance of the proposed

global audio noise estimation algorithm presented in Section

3.2. We collect a set of 452 high quality audio signals with

16KHz sampling rate of length around 3 seconds from the

TIMIT dataset [1]. The noise corrupted signals are generated

by adding AGWN of different variances to these original sig-

nals. To accommodate the different dynamic ranges of these

signals, we measure noise level with the signal-to-noise ra-

tio (SNR). We estimate the global noise for each corrupted

audio signal with 7 DCT AC filters using the algorithm de-

scribed in Section 3.2. As a comparison, we also implement

a 1D noise variance estimation method for audio based on

the iterative numerical estimation algorithm presented in [13]

with the same 7 DCT AC filters. Table 1 summarizes the av-

erage performance of both methods, showing the mean and

standard deviation (in parenthesis) of the estimated noise lev-

els in SNR for the same set of corrupted audio signals. The

average running time on the TIMIT audio dataset using our

method is only 0.03 seconds, which is much shorter than the

0.24 seconds average running time for the audio noise estima-

tion method converted from the algorithm described in [13].

10 dB 15 dB 20 dB 30 dB

Work in [13] 10.45(0.68) 15.20(0.83) 19.71(1.21) 27.83(4.28)

Our method 10.04 (0.13) 15.01 (0.24) 20.00(0.41) 30.73(3.53)

Table 1. The average performance of our noise estimation method,
with comparisons of the performance of the work in [13] on various
levels of additive white noises (signal-to-noise ratio: SNR).

We next evaluate the performance of the local audio noise

level estimation algorithm described in Section 3.3. A set of
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Fig. 3. ROC curves for the average SDA and SFP rates on 100 noise
corrupted audio signals with different SNRs.

noise corrupted audio signals are generated using randomly

selected audio signals in the TIMIT dataset. We corrupt each

audio signal with white Gaussian noise at a chosen time in-

terval of 20% of the length of the signal, with various noise

levels. For each noise level, we generate 100 tampered audio

signals. We then use two quantitative measures to evaluate

the performance of our audio forgery detection method. De-

note Ω as the region of audio samples in the true noise tam-

pered time interval, and Ω̃ as the region of audio samples in

the detected region. We define the sample detection accuracy
(SDA) rate as the fraction of audio samples in noise corrupted

region that are correctly identified, i.e., SDA = |Ω̃∩Ω||Ω| and the

sample false positive (SFP) rate as the fraction of audio sam-

ples in uncorrupted region that are detected falsely as from

noise corrupted time interval, i.e., SFP = |Ω̃−Ω|
|Ω̃| . To reduce

the effect of random samples, each pair of SDA/SFP rates is

computed as the averages over all 100 corrupted audios at

each noise level. The resulting ROC curves for various added

noise levels are shown in Fig.3. Note that the overall detection

accuracies for lower SNRs are better, because higher noise

levels tend to be easier to detect. In addition, we also test our

method on quantization noise due to rounding in digital signal

processing, and the estimation algorithm still holds.

As a further demonstration of the effectiveness of the pro-

posed method, we create realistic audio forgeries using audio

editing software GoldWave from GoldWave Inc.[2]. More

specifically, we select two source audio clips in WAV for-

mat with sampling rate 16KHz and data rate 256Kbps from

the TIMIT dataset. We also select an original sound track in

MP3 format with sampling rate 22KHz and data rate 24Kbps

for the popular episode The Marine Biologist of American

television sitcom Seinfeld. For fair comparison, we first com-

press the TIMIT WAV file to MP3 file with the same sampling

and data rates as those of the Seinfeld MP3 sound track. We

next perform two experiments with insertion or substitution

of chosen word segments from the Seinfeld episode into the

two compressed TIMIT audio clips. In the first experiment

as shown in Fig.4, we crop a phrase chosen from the Sein-
feld episode and insert it at the beginning of one TIMIT audio

clip. During the manipulation process, we carefully choose

the tampering section so that the resulting sentence is still
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Fig. 4. Example of insertion tampering, where the phrase ”Well, they told me” cropped from an episode of Seinfeld is inserted into a source
TIMIT audio signal (left). In both forged audio signal (middle) and detection result (right), the locations of the inserted audio segment are
marked in red.

Fig. 5. Example of substitution tampering, where the words ”biologist” and ”microorganisms” in a source TIMIT audio signal (left) are
replaced by ”A marine biologist” and ”the eye of the great fish” cropped respectively from an episode of Seinfeld. In both forged audio
signal (middle) and detection result (right), the locations of the two substituted audio segments are marked in red and green respectively.

meaningful. We also tune both the volume and speed of the

splicing audio components using GoldWave[2] to make the

forged audio signal hears more realistic. In the second exper-

iment as shown in Fig.5, we substitute two words in another

TIMIT audio signal for two word segments cropped from the

episode of Seinfeld. The detection results demonstrate that the

individual splicing segments in the forged audio signal exhibit

significant noise level differences, which provides strong evi-

dence of audio tampering.

5. DISCUSSION

In this work, we describe a fast and blind local noise level

estimation method, which can be further employed to detect

digital audio forgeries. Our method does not require specific

knowledge of the recording devices or the file format, and is

sufficiently efficient for forgery inspection on a large reposi-

tory of audio files. We are currently in the process of devel-

oping a reliable splicing detection method based on the esti-

mated local noise levels.

6. REFERENCES

[1] J. S. Garofolo, L. F. Lamel, W. M. Fisher, J. G. Fiscus, D. S.

Pallett, and N. L. Dahlgren. DARPA TIMIT acoustic-phonetic

continuous speech corpus CD-ROM, 1993. National Institute

of Standards and Technology, NISTIR 4930.

[2] GoldWave Inc., www.goldwave.com. GoldWave v5.58.

[3] Kirovski and Malvar. Spread-spectrum watermarking of audio

signals. IEEE Transactions on Signal Processing, 51(4):1020–

1033, 2003.

[4] Christian Krätzer, Andrea Oermann, Jana Dittmann, and An-

dreas Lang. Digital audio forensics: a first practical evalua-

tion on microphone and environment classification. In ACM
MM&Sec, Dallas, TX, 2007.

[5] Christian Krätzer, Kun Qian, Maik Schott, and Jana Dittmann.

A context model for microphone forensics and its application

in evaluations. In Proceedings of SPIE Media Watermarking,
Security, and Forensics III, San Francisco, CA, 2011.

[6] Hafiz Malik and Hany Farid. Audio forensics from acoustic

reverberation. In ICASSP, Dallas, TX, 2010.

[7] ABC News. Did someone mess with mel gibson’s audio

recordings? http://abcnews.go.com/Entertainment/

mel-gibsons-rants-messed/story?id=11169736, July

2010.

[8] BBC News. Bin laden tape ’not genuine’. http://news.bbc.

co.uk/2/hi/middle_east/2526309.stm, November 2002.

[9] D. R. Pauluzzi and N. C. Beaulieu. A comparison of snr esti-

mation techniques for the AGWN channel. IEEE Transactions
on Communications, 48(10):1681–1691, 2000.

[10] A.C. Popescu and H. Farid. Statistical tools for digital foren-

sics. In 6th International Workshop on Information Hiding,

Toronto, Canada, 2004.

[11] Shijun Xiang and Jiwu Huang. Histogram-based audio water-

marking against time-scale modification and cropping attacks.

IEEE Transactions on Multimedia, 9(7):1357–1372, 2007.

[12] Rui Yang, Zhenhua Qu, and Jiwu Huang. Detecting digital

audio forgeries by checking frame offsets. In ACM MM&Sec,

Oxford, UK, 2008.

[13] Daniel Zoran and Yair Weiss. Scale invariance and noise in

nature image. In ICCV 2009, Kyoto, Japan, 2009.

1844


