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ABSTRACT

In this paper, decoding metrics are designed for statistical

fingerprint-based content identification. A fairly general class

of structured codes is considered, and a statistical model for

the resulting fingerprints and their degraded versions (follow-

ing miscellaneous content distortions) is proposed and vali-

dated. The Maximum-Likelihood fingerprint decoder derived

from this model is shown to considerably improve upon pre-

vious decoders based on the Hamming metric. A GLRT test is

also proposed and evaluated to deal with unknown distortion

channels.

Index Terms— Content identification, audio, video,

hashing, fingerprinting, maximum likelihood decoding

1. INTRODUCTION

Hash-based content identification (ID) is an emerging re-

search area. Applications include broadcast monitoring, con-

nected audio, content tracking, asset management, contextual

advertisement, and filtering for user-generated content web-

sites [1, 2]. Content ID technologies are currently deployed

on sites such as YouTube and Dailymotion and aim at identi-

fying (automatically and in real time) copyrighted uploaded

content (audio and video). Hash-based algorithms allow for

real-time operation. Instead of matching the content itself,

one matches short fingerprints extracted from it, using robust

hashing methods.

An impressive variety of algorithms have already been de-

veloped for constructing signal processing primitives for ro-

bust hashes as well as efficient string matching algorithms.

Recently there have been attempts to formulate a scientific

framework for content ID, aiming at discovering the funda-

mental limits of content ID and ways to achieve them. For

instance, the paper [3] derives an information-theoretic rela-

tionship between database size, hash length, and robustness

that holds for any reliable, fingerprint-based, content ID sys-

tem, under some structural assumptions on the fingerprinting

code and a statistical assumption on the signals of interest.

Decoding of correlated binary fingerprints is studied in [4]

and the related problem of physical object identification is

studied in [5]. On the algorithmic side, the papers [6, 7] have

reported excellent ID performance using structured content

ID codes for audio and video ID, respectively, and a new hash

design algorithm called Symmetric Pairwise Boosting (SPB).

In this paper, we formulate a novel statistical model for

original and distorted fingerprints and validate this model

on the state-of-the-art audio fingerprinting algorithm of [6].

The model is then used to construct a new decoder based on

the maximum-likelihood principle. This decoder is shown to

vastly improve upon [6], which uses the Hamming decoding

metric, and over [8], which learns a weighted L2 decoding

metric.

2. STATEMENT OF THE CONTENT ID PROBLEM

A content database is defined as a collection of M elements

(content items) x(m) ∈ XN , m = 1, 2, · · · ,M , each

of which is a sequence of N frames {x1(m), x2(m), · · · ,
xN (m)}. Here X is the set of possible values of a frame. A

frame could be a short video segment, a short sequence of

image blocks, or a short audio segment. Frames may be over-

lapping spatially, temporally, or both. For instance, the audio

fingerprinting paper [6] uses overlapping time windows that

are 2 sec long and start every 185 ms; the temporal overlap is

15/16. A 3-minute second song is represented by N = 1000
frames. It is desired that the audio be identifiable from a short

segment, say 5 sec long, corresponding to L = 16 frames.

This is called the granularity of the audio ID system [6].

Typically L� N .

The problem is to determine whether a given probe con-

sisting of L frames, y ∈ XL, is related to some element of

the database, and if so, identify which one. To this end, an

algorithm ψ(·) must be designed, returning the decision

ψ(y) ∈ {0, 1, 2, · · · ,M}

where ψ(y) = 0 indicates that y is unrelated to any of the

database elements.

Algorithm performance is evaluated using several met-

rics [1], including execution time, probability of false pos-

itives, probability of false negatives, robustness, granularity

(L), database size (linear in M ), and storage requirements

(linear in MN ).
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3. STRUCTURED CONTENT ID CODES

In this paper, we restrict our attention to the following fairly

general class of content ID codes. The codes of [1, 6, 7],

among others, fall in this category.

Definition 3.1 A (M,N,L) content ID product code for a
size-M database populated with XN -valued content items,
and granularityL, is a pair consisting of a mapping φ : X →
F and a decoding function ψ : FL → {0, 1, · · · ,M}, such
that (i) a content item x is encoded into a fingerprint f ∈ FN

with components fi = φ(xi), 1 ≤ i ≤ N ; (ii) a probe y is
encoded into a probe fingerprint g ∈ FL with components
gi = φ(yi), 1 ≤ i ≤ L; (iii) the decoder returns m̂ = ψ(g).

Hence the mapping φ is applied independently to each

frame. It might be convenient to impose additional structure

on the code. For instance, the mapping φ : X → F in [6,7] is

obtained by applying a set of J optimized filters to each frame

and quantizing each of the J real-valued filter outputs to four

levels, as illustrated in Fig. 1. Hence F takes the form F =
AJ with A = {a, b, c, d}. In this case we view the fingerprint

as an array F = {Fij , 1 ≤ i ≤ N, 1 ≤ j ≤ J} and the probe

fingerprint as an array G = {Gij , 1 ≤ i ≤ L, 1 ≤ j ≤ J}.

We also write φ in vector form as φ = {φj , 1 ≤ j ≤ J}.
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Fig. 1. 4-level quantization of each filter output in fingerprint-

ing algorithm of [6]

Frame overlap causes strong dependencies between suc-

cessive fingerprint components. The challenge is to develop

a realistic and tractable model to account for such dependen-

cies. See [3] for a general stationary model, and [4] for a

binary fingerprint model (i.e., |F| = 2).

4. STATISTICAL MODEL FOR ORIGINAL
FINGERPRINT F

Since the frames are strongly temporally correlated, so are the

fingerprint components. Our statistical model is as follows.

• X is a stationary process, hence so is the fingerprint

process F.

• For each time 1 ≤ i ≤ N , the fingerprint com-

ponents Fij = φj(Xi), 1 ≤ j ≤ J are iid with

marginal pdf P over the alphabet A. (For the exam-

ple of Fig. 1 applied to our audio database, we obtain

P = [0.281, 0.259, 0.248, 0.212].)

• The fingerprint components φj(Xi) and φj′(Xi′) are

mutually independent for each pair (i, i′) and for each

j �= j′.

• Fij = φj(Xi), 1 ≤ i ≤ N is an homogeneous Markov

process for each j. The probability associated with fin-

gerprint f is then

p(f) =
J∏

j=1

[
P (f1j)

L−1∏
i=1

Q(fi+1,j |fij)
]

(1)

where Q denotes the |A| × |A| transition probability

matrix for Fi+1,j = φj(Xi+1) given Fij = φj(Xi). In

our example,

Q =

⎛
⎜⎜⎝

0.7816 0.1650 0.0432 0.0101
0.1770 0.6029 0.1888 0.0313
0.0517 0.2108 0.5918 0.1458
0.0162 0.0460 0.1915 0.7463

⎞
⎟⎟⎠ .

5. STATISTICAL MODELS FOR DEGRADED
FINGERPRINT G

In the event the probe is related to some element of the

database, we assume this relationship takes the following

form. Let N0 be an integer in {0, 1, 2, · · · , N − L − 1} rep-

resenting a time offset. We assume the degradation channel

from X to Y is a stationary stochastic mapping. Hence so is

the channel from F to G. We consider two models.

Order-0 Model. The simplest model for the channel is of

the form

p0(g|f , N0) =

J∏
j=1

L∏
i=1

W (gij |fi+N0,j) (2)

whereW is the conditional distribution ofGij given Fij . This

model implies that the errors on the fingerprint symbols are

conditionally iid given F. We refer to (2) as the order-0 (or

memoryless) degradation model. To simplify the notation,

we assume that N0 = 0 below. For illustration, the transi-

tion probability matrix W for the 20% echo distortion attack

considered later in this paper is

W =

⎛
⎜⎜⎝

0.8333 0.1505 0.0149 0.0012
0.1338 0.6991 0.1585 0.0085
0.0156 0.1900 0.6881 0.1063
0.0023 0.0184 0.1807 0.7986

⎞
⎟⎟⎠ .

This memoryless model is relatively simple but not accu-

rate. Indeed the errors on the fingerprint symbols are not only

correlated over time (for each j), but also correlated condi-

tioned on F.

Order-1 Model. Our proposed model for capturing the

correlation on the errors on fingerprint symbols is as follows:
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Fig. 2. Graphical model for order-1 statistical model on

matched fingerprints.

• The J processes {(Fij , Gij), 1 ≤ i ≤ L} are mutually

independent and have the same distribution for all j ∈
J .

• (F1:i, G1:i−1,j) → (Fi+1,j , Gij) → Gi+1,j forms a

Markov chain for each j ∈ J .

We use the symbol V to denote the conditional pmf of Gi+1,j

given (Fi+1,j , Gj). Hence V is an |A| × |A|2 stochastic ma-

trix.

Based on the above model, the conditional distribution of

g given f factors as

p1(g|f) =
J∏

j=1

[
W (g1j |f1j)

L−1∏
i=1

V (gi+1,j |fi+1,j , gij)

]
(3)

where the subscript 1 on p denotes the order-1 model.

What we have done above is to define a graphical model

(1) (3) for the joint process (F,G) which is loop-free and

therefore lends itself to optimal inference. It is easy to esti-

mate the conditional probability matrices W , V , etc. when

the total number of unknown parameters (O(|A|3) is low rel-

ative to the number of training data. Note that V depends on

the type of distortion used, e.g., audio compression or equal-

ization.

Hybrid Model. Different models present different advan-

tages, and it can be beneficial to combine them. Consider for

instance the geometrically weighted combination of p0 and p1
in (2) and (3),

pλ(g|f) = 1

C(λ)
p1−λ
0 (g|f) pλ1 (g|f) (4)

where λ ∈ [0, 1] is a tradeoff parameter and C(λ) =∫
p1−λ
0 pλ1 is a normalization constant.

6. MAXIMUM-LIKELIHOOD DECODER

We now consider the maximum-likelihood decoder matched

to the proposed model. This would be the optimal decoder if

the statistical model was exact. As in [3], it will be mathemat-

ically more convenient to consider a list decoder that returns

all indices m ≥ 1 for which the negative loglikelihood score

d(f(m),g) = − ln p(g|f(m))

falls below a predetermined thresholdLτ . If no suchm can be

found, the decoder outputs a no-match decision, i.e., ψ(g) =
0.

The ML decoding metric for the three statistical models

(2), (3), and (4) admits a relatively simple form owing to the

factorized forms. We respectively obtain

d0(f ,g) =
J∑

j=1

N∑
i=1

− lnW (gij |fij)

d1(f ,g) =
J∑

j=1

[− lnW (g1j |f1j)

−
L−1∑
i=1

lnV (gi+1,j |fi+1,j , gij)

]

dλ(f ,g) = (1− λ)d0(f ,g) + λd1(f ,g).

The Hamming metric

dH(f ,g) =
J∑

j=1

N∑
i=1

1{gij �= fij}

is obtained as a special case of the order-0 model when W is

the so-called |A|-ary symmetric channel.

7. GLRT

The stochastic matrices W and V are estimated for a given

type of distortion (e.g., audio compression). In reality the

decoder may not know the type of distortion channel used,

in which case the decoding metric may not depend on the

distortion channel. We consider two approaches.

• Average the matrices W and V over the different types

of distortion used, i.e., produce “one size fits all” ma-

trices W and V .

• Use a variant of the Generalized Likelihood Ratio Test

(GLRT) where the maximum likelihood over all chan-

nels is evaluated: the list decoder outputs all m such

that

−max
θ

ln p(g|f(m), θ) < Lτ

where θ is the index of the distortion channel. This test

uses the collection of matrices {Wθ} and {Vθ}.

8. NUMERICAL RESULTS

In our simulations, we used the SPB fingerprints of [6] with

J = 8 and L = 4. Three distortions are considered here: 64

kbps audio compression using WMA encoding, insertion of

a 20% echo, and bandpass filtering in the 0.4 – 4 kHz range.

Five other distortions were considered but only the stronger

attacks are reported here.
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Fig. 3. ROC curves for 20% echo distortion for Ham-

ming decoding metric, order-0 matched metric, hybrid order-

1 matched metric, and learned weighted L2 metric of [8].
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Fig. 4. Distributions of decoding metrics for 20% echo distor-

tion for (a) Hamming decoding metric, and (b) Hybrid order-1

matched metric.

To characterize the performance of competing decoders,

we show the Receiver Operating Characteristic (ROC) curve

parameterized by the test threshold τ . We also show the distri-

bution of the decoding metric for matching and non-matching

pairs. The decoder is applied to pairs of audio sequences ob-

tained from our audio database. The pairs are either matching

(one audio segment is a distorted version of the other) or non-

matching (the two audio segments are unrelated).

As shown in Fig. 3, the improvements of the order-0 de-

coding metric over the Hamming metric are strong. Addi-

tional improvements are obtained using the hybrid decoder

which exploits order-1 memory. Improvements are also ob-

tained relative to the decoder of [8]. It is seen in Fig. 4a,b that

the distributions of the decoding metrics for matching and

non-matching pairs are more concentrated and better sepa-

rated when correlations are properly modeled, which explains

the better ROC curves of Fig. 3.

Finally, the ROC performance of the decoders for an un-

known degradation channel is shown in Fig. 5. The “averaged

order-1 decoder” is obtained by using matrices W and V that

are estimated from an ensemble of degradations (in this case

the three degradations listed above). The best decoder is the

GLRT decoder. Its performance compares well with that of

the ML decoder that knows the degradation channel (called

Genie-aided in the figure).
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Fig. 5. ROC curve in case of an unknown degradation type.

9. CONCLUSION

Significant improvements in decoding performance have been

obtained by selecting a decoding metric matched to the finger-

print statistics and the degradation process. This is already ap-

parent from the order-0 (memoryless) degradation model, and

further improvements are obtained using an order-1 model.

The improvements are consistent with theory explaining the

benefits of carefully choosing the decoding metric for content

ID [3, 4].
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