
ATTACKING A PRIVACY PRESERVING MUSIC MATCHING ALGORITHM

José Portêlo1, Bhiksha Raj2, Isabel Trancoso1

1 IST / INESC-ID Lisboa, Portugal
2 Language Technologies Institute, Carnegie Mellon University, Pittsburgh PA, USA

ABSTRACT

Secure multi-party computation based techniques are often used to
perform audio database search tasks, such as music matching, with
privacy. However, in spite of the security of individual components
of the matching schemes, the overall scheme may still not be secure.
This paper explains how such flaws may occur, using a privacy pre-
serving music matching problem as a template, and provides a solu-
tion, and analyzes the resulting tradeoff between privacy and compu-
tational complexity. Although the paper focus on a music matching
application, the principles can be easily adapted to perform other
tasks, such as speaker verification and keyword spotting.

Index Terms— Music matching, Audio matching, Privacy, Se-
cure multi-party computation.

1. INTRODUCTION

As access to on-line data and services increases, ensuring the pri-
vacy and security of the data and users has become increasingly im-
portant. A large number of techniques have hence been been de-
veloped to protect the data. The majority of these methods are in-
tended to project the data from imposters and eavesdroppers, and do
so through encryption schemes that permit only authorized parties
to decrypt the data. However, an alternate scenario, where two par-
ties must perform joint computations, but desire not to expose their
data to one another, has also become increasingly important. For in-
stance, a user “Alice” may desire to query the database belonging to
an entity “Bob”, but not wish Bob to know what her query was, or
the responses she obtained. Bob, in turn, may wish not to let Alice
obtain anything besides the responses to her query.

Although such privacy concerns are typically expressed in the
context of text and numeric data, a significant recent trend also ap-
plies them to multimedia and audio data, where parties may desire
to perform mining, recognition or other pattern matching operations
collaboratively, but are not trustful of one another. We address one
such problem in this paper, that of private music matching. In our
scenario (as we explain in Section 3), Alice wishes to obtain meta-
data about a music snippet she possesses from Bob’s catalog, but
desires not to permit Bob to know what her song was. Bob in turn
desires to protect his catalog from Alice.

In order to deal with such problems a variety of secure multi-
party computation (SMC) protocols (briefly explained in Section
2) have been proposed in the literature [3]. These protocols em-
ploy methods such as homomorphic public-key encryption, oblivi-
ous transfer [8] and randomization, that enable Alice and Bob to
perform a variety of “primitive” operations collaboratively, without
divulging information. For instance, Alice may possess a vector a,
and Bob a vector b. An SMC primitive would permit Alice and Bob
to obtain randomly split additive shares of the result for the dot prod-
uct a · b without revealing a to Bob or b to Alice. This is achieved

through careful, iterated exchange of encrypted partial results in a
manner that guarantees that Alice and Bob remain ignorant of each
others’ data. A variety of SMC protocols have been proposed that
permit Alice and Bob to perform such operations as dot products,
determining the largest component of the component-wise sums of
their data, identifying the largest value, etc. “securely”, i.e. without
revealing their data to one another.

Based on these primitives, larger schemes can be built up that en-
able two or more users to perform a variety of tasks, such as database
searching, classification, prediction, etc. securely, i.e. without re-
vealing private information to one another. Relevant to this paper,
audio-related tasks, such as keyword spotting, speaker identification,
etc. can also be performed. It must be noted that since these are com-
posed from operations that require iterated exchange, they tend to
be much more expensive than the corresponding “insecure” counter-
parts. Since the larger schemes are composed from provably secure
primitives that do not individually reveal information, the larger op-
erations are generally considered to be secure themselves.

However, this is not always the case. Purported proofs of privacy
notwithstanding, simply combining a number of secure primitives
does not always result in a secure algorithm. We specifically address
the problem of secure music matching (which we describe in Sec-
tion 3), which uses a combination of secure dot product to compute
matching scores and a secure max value primitive to identify the best
matching song. The algorithm has previously been described in [1]
and [2], and can retrieve metadata for Alice without permitting Bob
to know her music clip or the metadata returned. However, as we ex-
plain in Section 4, in spite of the fact that individual computations are
secure, the fact that Alice’s clip is likely to match a segment of one
of Bob’s songs exactly enables him to precompute all such potential
matches a priori locally, and this may be enough for a motivated Bob
to uncover the identity of Alice’s clip in polynomial time.

We propose a solution, described in Sections 5 and 6, that em-
ploys a variant of oblivious transfer [8], which protects Alice’s infor-
mation from Bob by embedding it in random data. We show how this
proposed solution prevents Bob from being certain of Alice’s data,
and explain the probability of exposure. The solution, of course,
comes at the cost of greatly increased computation as we explain;
security is never free and comes at a computational price.

We note that although the proposed solution is presented in the
context of music matching, the general principle holds for any audio
matching problem, such as in recognition or mining, where one party
with a query intends to find a match in another’s database. In fact,
our solution generalizes to a variety of scenarios where the security
of the privacy preserving number comparison operations is compro-
mised by the availability of prior information. If the entity holding
the database can simulate the scores computed during the matching
process by comparing portions of his catalog to other portions, the
privacy of the querying party can be breached. Our proposed solu-
tion will apply in all these cases, as we explain in our conclusions.

1821978-1-4673-0046-9/12/$26.00 ©2012 IEEE ICASSP 2012

2. PRIVACY PRESERVING COMPUTATION

Consider Alice and Bob have private data a = {ai} and b = {bi}
respectively. They wish to compute a joint function f(a,b), but
without exposing their individual inputs to the other party. Privacy
preserving computation techniques enable such operations. Two key
tools in such computation that are central to this paper are homomor-
phic encryption and secure multi-party computation.

2.1. Homomorphic public-key cryptosystem

A public-key cryptosystem consists of a triple of probabilistic poly-
nomial time algorithms for key generation (KG), encryption (EN)
and decryption (DE). The key generation algorithm KG generates a
private key sk and a pubic key pk. The encryption algorithm EN
algorithm encrypts any plaintext message m to a cipher text c using
pk as c = EN(m, pk). The decryption algorithm DE recovers the
original input m from c using the private key sk.

A homomorphic cryptosystem additionally permits specific al-
gebraic operations to be performed indirectly in the plaintext by ma-
nipulating the ciphertext. Specifically, we consider the Paillier ho-
momorphic cryptosystem [5], which as the following properties:

EN(a, pk)× EN(b, pk) = EN(a+ b, pk) (1)

(EN(a, pk))b = EN(a× b, pk) (2)

2.2. Secure Multi-party Computation (SMC)

SMC techniques enable Alice and Bob to jointly compute a function
f(a,b) as if it were computed confidentially by a trusted third party,
such that neither party learns anything about the other’s data more
than what can be inferred from the result. This is achieved through
iterated exchange of encrypted or otherwise obfuscated partial re-
sults in elaborate protocols that employ homomorphic encryption,
oblivious transfer [8] and randomization.

Typically, they define a number of “primitive” operations that
can be performed “securely” (i.e. without revealing information).
At the end of each primitve operation Alice and Bob end up with
random additive shares ca and cb, such that the actual outcome of
the computation is given by ca + cb. Some typical primitives are:

◦ Secure Inner Product (SIP): SIP [4] computes ca and cb such that
ca + cb = a · b.

◦ Secure Max (SMAX) and Secure Max Value (SVAL): SMAX [4]
computes ca and cb such that ca+ cb = argmax1 ai + bi. SVAL
[4] obtains ca + cb = maxi ai + bi.

◦ Permute [6]: Here Alice and Bob end up with arrays ā and b̄, such
that ā+ b̄ = π(a) + π(b), where π() is some permutation.

Other such primitives can be defined. Larger computations, such as
regression, classification, or, in our case, matching and retrieval, can
be obtained through judicious combination of these primitives.

3. PRIVACY PRESERVING MUSIC MATCHING

Alice possesses a snippet of a song. She desires to find out what
the song is. Bob possesses a song catalog and can help Alice by
matching her snippet to songs in his catalog. However Alice does not
desire (for whatever reason) to let Bob know what her snippet is. The
secure music matching algorithm, described in [1] and [2] addresses
this problem. Briefly, the secure music matching algorithm proceeds
as follows:

◦ Step 1 - Cross-correlating the music signals: Alice and Bob use
SIP to compute the cross-correlation between Alice’s clip and all
the recordings in Bob’s catalog. The results are distributed among
them as random additive shares.

◦ Step 2 - Obtaining the cross-correlation peaks: Alice and Bob
employ SVAL to obtain additive shares of an array with the peak
cross-correlation values of each of Bob’s songs with Alice’s clip.

◦ Step 3 - Finding the most likely song index: Alice and Bob
perform an SMAX protocol over the additive shares of cross-
correlation peaks to find the index in Bob’s database which
corresponds to Alice’s song.

◦ Step 4 - Obtaining the desired information: Alice retrieves the re-
quired information from Bob’s database using oblivious transfer.

The protocol, if adhered to, should enable Alice to retrieve the meta-
data for her song from Bob’s catalog, while Bob himself never learns
what song Alice’s snippet contained.

The key step of the process is Step 3, which derives the index
of the song corresponding to Alice’s snippet from Bob’s database
without revealing it to Bob. At the end of Step 2 Alice and Bob
obtain random additive shares a = {ai} and b = {bi} of the peak
correlation of Alice’s snippet with each of Bob’s songs: ai + bi
represents the peak correlation of the ith song in the catalog. The
SMAX protocol must find the index i for which ai+bi is maximum,
but to do so without revealing the maximum index to Bob it first
employs a permute protocol.

The permute protocol [6] produces permuted additive shares a
and b for Alice and Bob such that a + b = π(a + b) using a per-
mutation π() known only to Alice. This is done as follows. Bob
generates a private/ public key pair (sk, pk), encrypts b and sends it
to Alice along with the public key pk. She generates a random num-
ber si for each bi from Bob and adds it homomorphically to the en-
crypted bi values as EN(bi + si, pk) = EN(bi, pk)×EN(si, pk)
to obtain EN(b′, pk), where b′ = {bi + si}. She also computes
a′ = {ai − si}. She then permutes EN(b′, pk) and a′ using
her permutation π() to obtain EN(b, pk) = π(EN(b′, pk)) and
a = π(a′). She forwards EN(b, pk) to Bob who decrypts it to get
b, while she retains a, satisfying the requirements of the protocol.

For SMAX, Alice then generates a random number r which she
adds to each of the entries of ā and then sends ā + r to Bob. Bob
can add this to b to obtain z̄ = ā + b̄ + r = π(a + b + r).
He finds the index of the largest entry in z̄ and return it to Alice,
who unpermutes it to find the true index of her desired song. In the
process Bob provably learns nothing since the permutation π() hides
the true value of the index, and the random number r hides the true
value of the peak correlation.

4. ATTACKING THE PRIVACY OF THE ALGORITHM

In [1] it has been assumed that since each of the component prim-
itives are provably secure, the overall algorithm must be secure as
well. Alice and Bob only exchange encrypted data, and rely on se-
cure two party computations to achieve their goals. This should suf-
fice for them to have the guarantee that their privacy is preserved.
However, this is a fallacious assumption as we now demonstrate.
The problem resides neither in the homomorphic cryptosystem nor
in the security properties guaranteed by any of the secure two party
computations, but in the fact that the secure computation chosen to
perform Step 3 is not adequate for solving the problem at hand.

The problem arises due to two factors: 1. the same operations
are repeated on all songs in Bob’s catalog, and 2. Bob can validly as-
sume that in the case of a match, Alice’s snippet will be very similar

1822

to a corresponding segment from one of his songs. The correlation
between any other segment and the matching segment will not be
significantly different from its correlation to Alice’s snippet.

In Step 2, Alice and Bob obtain additive shares ai and bi of the
peak correlation zi = ai + bi of the ith song in Bob’s data. After
Step 3, Bob possesses permuted values {z̄i} = {π(zi)} + r; the
permutation π() and noise r are intended to hide the data from Bob.
However, Bob can compute differences over all pairs of z̃’s, i.e., z̃2−
z̃1 = π(z2)−π(z1), z̃3− z̃2 = π(z3)−π(z2), ..., thus removing the
random number r. The complexity of this process is O(K2). Next
Bob computes zuvw, which is the peak cross-correlation between
the segment u of song v and the song w, for all u, v, and w with
computational complexity O(η2K2), where η is the average number
of segments of the same length as Alice’s snippet in a song. He
then tries iteratively to find u1, v1, w1 and u2, v2, w2 such that
zu1v1w1 − zu2v2w2 ≈ π(zi) − π(zj), for all i, j, with complexity
O(ηK2). Once Bob completes this, he can reverse the permutation
and find the index of Alice’s song in his database. In practice, he
can potentially speed this up by several orders of magnitude using
branch-and-bound algorithms.

5. SECURING THE ALGORITHM

In this section we describe a robust approach which makes use of
the secure greater-than (SGT) comparison [7], thus preventing Bob
from having access to Alice’s data in plaintext. The SGT works by
comparing two values at the bit level. Consider the bit representation
of values α = ai− aj and β = bj − bi to be α = αnαn−1...α1 and
β = βnβn−1...β1 respectively. For each bit m, m = 1, ..., n, Bob
computes dm = αm−βm, fm = αm⊕βm = αm−2αmβm+βm,
γm = 2γm−1+fm and δm = dm+rm(γm−1), with rm a random
number. Bob then permutes all the δm and sends them to Alice.
Alice now only has to check each δm and see if any of them is 1 or
−1. If ∃m : δm = 1, then αm > βm ⇒ α > β; if ∃m : δm = −1,
then αm < βm ⇒ α < β; else α = β.

We analyze three different ways to tackle this problem, each pro-
viding different levels of privacy and performance: the first aims at
optimum performance, the second aims at optimum privacy preser-
vation and the third uses the best characteristics of the other two. We
also analyze the execution time of each approach in comparison with
TStep2, which is the total execution time of Step 2. This step is also
the bottleneck of the original algorithm in terms of execution time.

5.1. Maximal performance approach

The first approach uses only the minimum amount of comparisons
that one must make in order to find the maximum value from a set
of K numbers, which is K − 1. The time required to do this is
T 1

Step3 = 1
η
· TStep2, since now Bob only needs to compute one SGT

comparison for each song in his database. However, if he computes
only this minimum amount, after the last comparison he knows that
Alice’s song corresponds to one of the two indexes used in the last
comparison, which means that he has a 1/2 probability of making a
correct guess. This approach preserves almost no privacy on Alice’s
side, and therefore it is not suitable for our purpose.

5.2. Maximal privacy preservation approach

The second approach, which provides the maximum privacy possi-
ble, requires all cross-correlation values to be compared with each

other, implying a total of
K(K−1)

2
comparisons. If Bob does this,

he will have no idea of which song Alice has, but he would require

T 2
Step3 = K

2η
· TStep2, which is much larger than TStep2 since K >> η.

Using this approach leads to an unacceptable increase in the execu-
tion time of the overall algorithm when compared with its original
formulation, and therefore it is also not suitable for our purpose.

5.3. Compromise approach between performance and privacy

From the two previous approaches we realize that it is possible for
Alice to get the index she wants from Bob’s database either in a
completely privacy preserving manner or a time efficient way, but
not both at once. This leads us to devise a compromise approach that
only leaks partial information, so that Bob cannot learn anything he
is not supposed to, while also not turning this step of the algorithm
into its new bottleneck. The approach we developed achieves this
using K

2
logK SGT comparisons, which means that its execution

time is T 3
Step3 ≈ logK

2η
· TStep2, and therefore smaller than TStep2 for

reasonable values of K and η. The basic idea is to perform logK
rounds of comparisons with K

2
comparisons each. In the next section

we will show how we obtained these numbers.

6. ANALYSIS OF THE COMPROMISE APPROACH

This section illustrates our approach one step at a time, for small
values of K, as the results obtained are independent from the value
of K considered.

6.1. Example with K = 8 = 23 songs

We start with an example of how our approach works for K = 8.
Consider the cross-correlation values zi, i = 1, ..., 8, such that z1 >
z2 > ... > z8. Any other combination of greater-than orderings
between these numbers does not affect our analysis, which means
that any conclusions we take from this specific ordering will also
hold for all the other possible orderings.

The basic idea behind our approach is to iteratively perform
greater-than comparisons between the maxima of two adequately se-
lected comparisons from the previous round and greater-than com-
parisons between the minima of the same two comparisons from
the previous round. For the first round of comparisons we use the
original sequence split into pairs. The sequence of comparisons one
needs to make is as follows:

1st : (z1, z2) 1 , (z3, z4) 2 , (z5, z6) 3 , (z7, z8) 4

2nd : (z1, z5) 5 , (z2, z6) 6 , (z3, z7) 7 , (z4, z8) 8

3rd : (z1, z3) 9 , (z5, z7) 10 , (z2, z4) 11 , (z6, z8) 12

For any possible greater-than ordering of cross-correlation val-
ues, the previous sequence of comparisons generalizes to:

1st : (z1, z2) 1 , (z3, z4) 2 , (z5, z6) 3 , (z7, z8) 4

2nd : (max 1 ,max 3) 5 , (min 1 ,min 3) 6 ,

(max 2 ,max 4) 7 , (min 2 ,min 4) 8

3rd : (max 5 ,max 7) 9 , (min 5 ,min 7) 10 ,

(max 6 ,max 8) 11 , (min 6 ,min 8) 12

Notice that in each step one can start by comparing either the
maxima or the minima of the previous round of comparisons, as long

1823

as they are alternating with each other. Getting back to our example,
after each round Bob knows:

1st : α1 ← ((z1 > z2 and z5 > z6) and (z3 > z4 and z7 > z8)) or

β1 ← ((z2 > z1 and z6 > z5) and (z4 > z3 and z8 > z7))

2nd : γ1 ← ((z1 > z5 and z3 > z7) and (z2 > z6 and z4 > z8)) or

δ1 ← ((z5 > z1 and z7 > z3) and (z6 > z2 and z8 > z4))

3rd : −
He can try to guess which song Alice has, by assuming any of the

4 possible combinations of partial greater-than relationships between
the cross-correlation values. For each combination Bob obtains:

α1 + γ1 : z1 >z2
z5> z6, z3 >z4

z7> z8 −→ z1 or z3

α1 + δ1 : z5 >z6
z1> z2, z7 >z8

z3> z4 −→ z5 or z7

β1 + γ1 : z2 >z1
z6> z5, z4 >z3

z8> z7 −→ z2 or z4

β1 + δ1 : z6 >z5
z2> z1, z8 >z7

z4> z3 −→ z6 or z8

At the final round Bob does not learn anything new because he
does not get any more greater-than comparison requests from Alice.
Also, because of the ambiguity introduced by letting Alice decide
whether Bob starts the next round of comparisons using the maxima
or the minima from the previous round, he cannot make a correct
guess on what song Alice has with probability P more than 1/8,
even with partial information he has regarding the correct greater-
than ordering of the zi’s. Generalizing this to any K = M = 2m,
Bob cannot correctly guess Alice’s song with P > 1/K.

6.2. Generalization for any K songs

Finally, all it remains is to study our approach for the most general
case, where K can be any positive integer. Considering for instance
the limit situation of K = 5 = 22 + 1 and any possible ordering of
the zi’s, the sequence of comparisons requested by Alice would be:

1st : (z1, z2) 1 , (z3,−) 2 , (z5,−) 3 , (z7,−) 4

2nd : (max 1 , z5) 5 , (min 1 , z5) 6 , (z3, z7) 7 , (z3, z7) 8

3rd : (max 5 ,max 7) 9 , (min 5 ,min 7) 10 ,

(max 6 ,max 8) 11 , (min 6 ,min 8) 12

In this situation, after each round of comparisons Bob learns:

1st : α2 ← ((z1 > z2 and 1) and (1 and 1)) or

β2 ← ((z2 > z1 and 1) and (1 and 1))

2nd : γ2 ← ((z1 > z5 and z3 > z7) and (z2 > z5 and z3 > z7)) or

δ2 ← ((z5 > z1 and z7 > z3) and (z5 > z2 and z7 > z3))

3rd : −
As before, Bob can assume any of the 4 possible combinations:

α2 + γ2 : z1 > z2 > z5, z3 > z7 −→ z1 or z3

α2 + δ2 : z5 > z1 > z2, z7 > z3 −→ z5 or z7

β2 + γ2 : z2 > z1 > z5, z3 > z7 −→ z2 or z3

β2 + δ2 : z5 > z2 > z1, z7 > z3 −→ z5 or z7

Notice that in this situation Bob also has no idea of what song
Alice has, but because K is not a power of 2, the probabilities of
him guessing correctly depend on actual index of the right song.

This means that, in the current situation, the probability of guess-
ing Alice’s song correctly is 1/4 if it has the index 3, 5 or 7 and it
is 1/8 if it has the index 1 or 2. Like before, this situation can be
easily expanded to any value of K, and therefore the description of
our approach is now complete.

7. CONCLUSIONS

In this paper we presented a robust approach to correct a flaw in
a privacy preserving music matching algorithm. We identified the
source of problem and described several ways to tackle it, illustrat-
ing several levels of performance and privacy preservation that can
be obtained. This paper also confirms that although SMC protocols
allow parties to perform operations in a secure way, how these pro-
tocols are used is equally important, as the amount of privacy they
guarantee depends on the situation in which they are used. Although
our approach for correcting the attack was presented in a privacy
preserving music matching algorithm context, it can easily be used
in many other situations which at some point need to compute the
maximum of an array in a secure way.

8. ACKNOWLEDGEMENTS

José Portêlo was supported by FCT grant SFRH/BD/71349/2010.
Bhiksha Raj was partially supported by NSF grant 1017256.

9. REFERENCES

[1] M. Shashanka and P. Smaragdis, “Privacy-Preserving Musical
Database Matching”, in 2007 IEEE Workshop on Applications
of Signal Processing to Audio and Acoustics, New Platz, NY,
October 21-24, 2007, pp. 319-322.

[2] J. Portêlo, B. Raj, A. Abad and I. Trancoso, “On the Implemen-
tation of a Secure Musical Database Matching”, in Proccedings
of European Signal Processing Conference - EUSIPCO 2011,
Barcelona, Spain, August 29-September 2, 2011, pp. 1949-
1953.

[3] Y. Lindell and B. Pinkas, “Secure Multiparty Computation for
Privacy-Preserving Data Mining”, in Journal of Privacy and
Condentiality, 1(1):5998, 2009.

[4] P. Smaragdis and M. Shashanka, “A Framework for Secure
Speech Recognition”, in IEEE Transactions on Audio, Speech,
and Language Processing, Vol. 15, No. 4, May 2007, pp. 1404-
1413.

[5] P. Paillier, “Public-key Cryptosystems based on Composite De-
gree Residuosity Classes”, in Proceedings of Advances in Cryp-
tology - EUROCRYPT’99, ser. Lectures Notes in Computer Sci-
ence, J. Stern, Ed., vol. 1592, 1999, pp. 104-120.

[6] M. Atallah, F. Kerschbaum and W. Du, “Secure and Private Se-
quence Comparisons ”, in Proceedings of Workshop on Privacy
in the Electronic Society, Washington, DC, October 2003.

[7] I. Blake and V. Kolesnikov, “Strong Conditional Oblivious
Transfer and Computing on Intervals”, in Proceedings of Advan-
tages in Cryptology - ASIACRYPT’04, volume 3329 on LNCS,
pp. 515-529, Springer-Verlag, 2004.

[8] M. Naor and B. Pinkas, “Oblivious Transfer and Polynomial
Evaluation”, in Proceedings of the 31st Annual ACM Sympo-
sium on Theory of Computing, 1999, pp. 245-254.

1824

