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ABSTRACT

Content-Based Image Retrieval Systems (CBIRS) used in

forensics related contexts require very good image recogni-

tion capabilities. Whereas the robustness criterion has been

extensively covered by Computer Vision or Multimedia lit-

erature, none of these communities explored the security of

CBIRS. Recently, preliminary studies have shown real sys-

tems can be deluded by applying transformations to images

that are very specific to the SIFT local description scheme

commonly used for recognition. The work presented in this

paper adds one strategy for attacking images, and somehow

enlarges the box of tools hackers can use for deluding sys-

tems. This paper shows how the orientation of keypoints can

be tweaked, which in turn lowers matches since this deeply

changes the final SIFT feature vectors. The method learns

what visual patch should be applied to change the orientation

of keypoints thanks to an SVM-based process. Experiments

with a database made of 100,000 real world images con-

firms the effectiveness of this keypoint-orientation attacking

scheme.

Index Terms— Forensics, Security, Content-Based Im-

age Retrieval, SIFT, SVM

1. INTRODUCTION

CBIRS get increasingly involved in multimedia forensics

applications such as the detection of illegal copies of copy-

righted material, or the automatic detection of child pornog-

raphy images. Since the goal is here to scout fraudulent

behaviors, the system is likely facing some malevolent forces

which will adapt and strike back. Whereas the community

usually benchmarks the robustness of CBIRS against generic

content transformations (compressions, crops, . . . ), their se-

curity has rarely been addressed. The security of a CBIRS

is its ability to resist to some dedicated attacks led by mali-

cious pirates against the specific techniques this system uses.

Recently, a handful of papers have warned the community

about the poor security levels of CBIRS [2, 1, 3]. These

papers describe various strategies endangering the recogni-

tion capabilities of systems relying on the well-known SIFT

descriptors [5]. Once accurately known the way SIFT works,

it is possible to transform images introducing as few visual

distortions as possible, while maximizing the impact on the

final descriptors used for matching. In turn, the system might

fail to recognize an image otherwise always detected, or rank

it far in the list of images found to be similar.

In [1], this goal is achieved by using a complex mixtures

of keypoint removal and keypoint creation. Removing key-

points reduces the number of matches; creating keypoints pro-

duces false positives. Overall, [1] exploits the way the Dif-

ference of Gaussian (DoG) value of a keypoint is used in

the SIFT extraction process. [1] applies on images carefully

crafted visual patches around keypoints to preclude or trigger

their detection at feature extraction time.

The work presented in this paper follows a different track.

It exploits the way the orientation of keypoints is used in the

SIFT extraction process. In Section 2, we review SIFT and

then study the influence of the orientation of keypoints on

the matching of descriptors. Numerical experiments show

that if a sufficient change in orientation of a keypoint is in-

troduced, then the resulting descriptor computed from the at-

tacked keypoint is more difficult to match with the original

descriptor. Section 3 proposes a method based on multiple

SVMs for learning the best orientation changing patches to be

applied on keypoints. Section 4 evaluates the effectiveness of

this method against a database of 100,000 images and shows

this orientation-based strategy for attacking images described

with SIFT can delude systems.

2. SIFT: FROM ORIENTATION TO DESCRIPTOR

2.1. Overview of SIFT

SIFT computes local features by running a three steps pro-

cess. First, it detects a keypoint located in (x, y) in the image

at scale σ if it is a local extremum of the DoG response. In the

second step, the main orientation θ is computed based on gra-

dient directions locally around (x, y). The keypoint is defined

as kp = {x, y, σ, θ}. The third step computes a descriptor on

a support region centered on (x, y), whose size depends on

scale σ. A support region is divided into 16 subregions, and a

8-bin quantized histogram of weighted gradient orientation is

computed on each subregion, resulting in a 128-dimensional
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Fig. 1. Euclidean distance between descriptors as a function

of the distance in radian between the keypoint orientation.

descriptor. It is key to note that gradient orientations are de-

termined relatively to the keypoint orientation θ, achieving

invariance to rotation.

2.2. Changing Orientations Impacts Descriptors

As the value of the descriptor is relative to the keypoint ori-

entation, modifying that orientation will thus change the de-

scriptor. Note that this is different from rotating the whole

support region, which has no impact on description.

Figure 1 shows the impact of a forced change of orien-

tation for all the keypoints from octaves {−1, 0, 1} of the

Lena image. We first described Lena using the open-source

VLFeat package [6]. We then patched the code of VLFeat to

artificially change the orientation of the keypoints it detects

by a multiple of π/18. We then launched 35 descriptions of

Lena, each time increasing the orientation change from π/18
to 35π/18. The Figure 1 plots the distance in the feature

space between the descriptors computed on Lena and the de-

scriptors after the orientation changes. Only the distances for

changes between π/18 and π are reported in this figure as it is

symmetric beyond that point. Figure 1 shows that the larger

distances in feature space are reached when keypoint orienta-

tion is changed by π/2 (hence also 3π/2). In other words, if

the new orientation is orthogonal to the original one, then the

maximum difference between descriptors is obtained. This

applies to other images as well.

3. SVM FOR CHANGING ORIENTATIONS

This section describes the method we use to force the orien-

tation of keypoints. In short, we learn what patch ε should be

applied to a specific support region to change the orientation

by π/2. This method relies on a collection of SVMs. Each

SVM determines the hyperplane separating the keypoints

having the orientation θ1 from the keypoints having the ori-

entation θ2 = θ1 + π/2. To facilitate learning, reduce the

noise and be more effective, the orientation space is quantized

in bins of length π/18. Therefore, we use 18 SVM classifiers

trained for the 18 pairs of orthogonal orientations (e.g., from

orientations ranging in [0, π/18] to orthogonal orientations

ranging in π/2 + [0, π/18]).
To train the SVMs, we first determine all the keypoints

and their orientation (using VLFeat) for a set of 1,000 images

randomly picked from Flickr. We keep only keypoints be-

longing to the octaves {−1, 0, 1} as their support regions are

quite small, facilitating patching them visually while not too

severely distorting the images. We then normalize all support

regions to be of size (12×12) (this is the average size of low-

est octave patches observed on a large set of images) and map

all of them from gray-scale to range [0, 1]. It is then stored in

a vector r of L components.

The set of keypoints is then divided into classes according

to their orientations θ. Let X1 = {(ri, �i)}i be the training set

of normalized support regions ri of a given orientation θ1,

forming the class labeled by �i = +1. X2 = {(rj , �j)}j is

the training set of normalized support regions rj whose ori-

entation is θ2 = θ1 + π/2, forming the dual class labeled by

�j = −1. At training time, the SVM in charge of θ1 and θ2

learns the hyperplan parameters (w, b) separating X1 and X2

as solution of:

�k.(〈w, Φ(rk)〉 + b) ≥ 1 ∀rk ∈ {X1,X2},
with 〈w, Φ(x)〉 =

∑
k:αk>0 αk�kK(x, rk),

where Φ maps x to an higher dimensional space, αk are the

Lagrange multipliers, and K is the Radial Basis kernel func-

tion (RBF):

K(x, rk) = 〈Φ(x), Φ(rk)〉 = exp

(
−‖x − rk‖2

2σ2

)
. (1)

Once trained, the SVM is used to determine the patch ε
of minimum norm to be added to a region r ∈ X1, such that

r + ε ∈ X2. This asks to solve the following optimization:

min
1
2
‖ε‖2

(2)

s.t.
∑

k:αk>0

αk�kK(r + ε, rk) + b = �2Δd, (3)

and 0 ≤ ri + εi ≤ 1, ∀i ∈ {1, . . . , L} (4)

where Δd > 0 is the distance from r + ε to the hyperplane

(w, d). Eq. (4) ensures that the modified region remains in the

range [0, 1]. Define scalars ak = αk�kK(r, rk), and vectors

ck = 2(r − rk). Then, Eq. (3) can be rewritten as:

∑
k:αk>0

ak exp

(
−c�k ε + ‖ε‖2

2σ2

)
= �2Δd − b. (5)

This minimization problem under constraints is solved us-

ing an interior-point method, resulting in the desired ε to be

applied. Once ε is known for a particular r, we reshape to

12 × 12, interpolate to fit the corresponding support region,

and rescale it, to finally add this patch to the pixels.
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Fig. 2. Number of keypoints per orientation change bin after

support region modification.
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Fig. 3. Distance between the original and modified descrip-

tors per orientation change bin.

4. EVALUATION

In this section, we first evaluate the effectiveness of the above

method for changing the orientation of keypoints. We show

that while the orientation of many keypoints indeed change,

some remain un-impacted. We evaluate the method at the im-

age level and show new keypoints appear as side effects of

visual distortions. We finally benchmark the effectiveness of

the method when querying a database of 100,000 random im-

ages with orientation-attacked quasi-copies.

The 100,000 images used have been randomly down-

loaded from Flickr and are very diverse in contents. All

images have been resized to 512 pixels on their longer edge.

This collection yields 103,454,566 SIFT-VLFeat descriptors.

The SVMs were trained using 1,000 random images from

that set, as described earlier. Note that this amounts to about

1,026,000 samples, and the number of samples per orienta-

tion class ranges between 19,567 and 45,060. Note also that

we set Δd = 2 in our experiments.

4.1. Ability to Change Orientations

We applied the method to the keypoints of the 1,000 images.

To check whether or not orientations changed, we observed

for all keypoints the angle between each original and attacked

keypoint, expecting a change of Δθ = π/2. However, this is

not always verified. Figure 2 counts the number of keypoints

as a function of the observed orientation change Δθ. Each

bin on x-axis covers a range of π/18 from 0 to π: the first bin

corresponds to keypoints with Δθ ∈ [0, π/18[, . . . It appears

that for most of the keypoints, the orientation is changing by

6π/18 to 8π/18 (7th and 8th bins). The value of Δd drives

this phenomenon: a larger value for Δd increases the number

of π/2 changes but in turn causes more severe and visible

distortions in the patches.

While Figure 1 suggested enforcing Δθ = π/2 would be

best, Figure 3 shows that, in practice, a value for Δθ rang-

ing from 4π/18 to 13π/18 pushes far away the attacked de-

scriptors in the feature space. Figure 3 shows the average of

the euclidean distances between the original and attacked de-

scriptors, as a function of Δθ. The observed distances are

fairly constant between 4π/18 and 13π/18. It is therefore not

necessary to increase Δd. When Δd = 2 and when combin-

ing Fig. 2 and 3, then about 79% of the orientations changed,

moving as far as possible descriptors in the feature space, and

making matches potentially problematic.

The average PSNR between the original and attacked

patches is 21.64dB. It is possible to preserve the PSNR by

running a small variant of the method. Instead of applying

the patch to the whole support region, only it central region is

added. The size of the latter is proportional to the size of the

support region, e.g. 11 × 11 for scale σ = 0. It is however

quite effective due to the weighting scheme used when deter-

mining the orientation, the central area of the support regions

having more influence. Reproducing all experiments with this

variant gives an average PSNR of 23.84dB. It does, however,

change the effectiveness of the method as fewer keypoints

have their orientation changed: modifying the central part

of their support region being not sufficient. Figure 4 counts

the number of keypoint as a function of Δθ observed with

this variant. It clearly shows many orientations could not be

changed (see the left-most bin); most of the keypoints that

changed orientation have a Δθ ∈ [4π/18, 10π/18]. The dis-

tances between descriptors are identical to the ones observed

on Fig. 3. Because it gives good results while preserving the

PSNR, this variant is the method used in the sequel.

4.2. Impact at Image-Level

To get an acceptable visual distortion for the attacked image,

the variant modifying the center of support regions is used and

applied only if the PSNR between the original and patched

support regions is bigger than a given threshold tPSNR. We

apply the method to 1,000 images for 3 different tPSNR val-

ues: 15.3, 16.3, and 17dB. The average PSNR computed

over the 1,000 images are respectively 28.39, 29.24, and

29.93dB, showing the PSNR increases with tPSNR.

Having a closer look on how the keypoints are modified

by the orientation attack shows that keypoints can be divided

into three classes: (i) either the keypoint is unchanged (same
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Fig. 4. Number of keypoints per orientation change bin when

applying a centered cropped patch.

location, same scale, same orientation), or (ii) its orientation

has changed (same location, same scale, but significantly dif-

ferent orientation), or (iii) a new keypoint is has been created

as side effect of distortions introduced by the attack.

We evaluate how many keypoints fall into each class as

follows. Let kpo = {xo, yo, σo, θo} be an original keypoint,

(x, y, σ, θ) a keypoint in attacked image, and d(.,.) the eu-

clidean distance. A keypoint falls into the class (i) if there is a

kpo such that d ((x, y), (xo, yo)) ≤ 5 and 0.7 ≤ σ/σo ≤ 1.3
and |θ − θo| ≤ π/18. These values have been determined

because any keypoint in that class remains pretty close to its

original keypoint in the feature space (at a distance lower than

200, see Fig. 3), allowing easy matching. A keypoint falls into

the class (ii) if there is a kpo such that d ((x, y), (xo, yo)) ≤ 5
and 0.7 ≤ σ/σo ≤ 1.3 and |θ − θo| ≥ π/18. The remaining

keypoints fall into the class (iii). They can be seen as new

keypoints as they are far in position or scale with respect to

the original keypoints. Overall, when applying the method to

1,000 images with tPSNR = 17, then about 58% of the key-

points have their orientation changed (they fall into class (ii)),

28% fall into class (i) and 27% fall into class (iii).

4.3. Impact on Large-Scale Recognition

To run an experiment involving large-scale recognition, we

indexed the 103,454,566 SIFT-VLFeat descriptors with the

NV-Tree high-dimensional indexing scheme [4]. The NV-

Tree runs approximate k-NN queries and has been specifi-

cally designed to index large collections of local descriptors.

The same 1,000 images are used as queries and we ran the

proposed orientation attack on them resulting in quasi-copies.

The variant modifying the center of support regions is used

and controlled by the tPSNR threshold. Each query probes

the system which returns the top 100 images with associated

scores. We then compute the average score of the original

image (the one used to forge the quasi-copy that the sys-

tem should identify). Figure 5 shows average score of orig-

inal image (red line) and the four top matching images for

some different tPSNR values. From right to left, the gap be-

Fig. 5. Average scores over 1,000 queries for tPSNR equals

15.3, 16.3, or 17.

tween original image and best competitor scores decreases, as

the strength of the attack increases. The attack succeeds for

tPSNR = 15.3. Even if the attacked image is not completely

concealed, the original image has not the best score anymore,

and gets hidden behind another image that better matches.

5. CONCLUSIONS

A new angle of attack of CBIRS based on SIFT descrip-

tors, focusing on the influence of the orientation disturbance

on the recognition of an image, is studied. The orientation

shift in descriptor computation is accomplished by introduc-

ing locally non-affine modifications, through the addition of

patches that are learned by an SVMs process. The effective-

ness of the method is evaluated on a substantial number of

images. The results show that applying this single attack can

lower enough the score of the original image so that it is no

longer returned at first position by the system. Clearly, to be

truly effective, this strategy must be combined with other at-

tacks. In future work, the geometric verification step included

in CBIRS as post-filtering should be considered also.
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