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ABSTRACT

In this paper, a halftoning-based watermarking scheme with high data 
capacity and image quality is presented. Three types of watermarks of 
various pixel-depths, including 1-bit, 2-bit, and 3-bit, are able to be 
embedded without prominently damaging the image quality. To 
achieve high marked image quality, the parallel-oriented high 
efficient Direct Binary Search (DBS) halftoning is adopted to 
cooperate with the proposed Orientation Modulation (OM) method. 
In the decoder, the Least-Mean-Square-trained (LMS-trained) filters 
are adopted to extract the features of marked images in the frequency 
domain, and the naïve Bayes classifier is employed to analyze the 
extracted features and further decode the watermark information. 
Experimental results demonstrate that the proposed DBS-based OM 
encoding scheme provides excellent image quality, high processing
efficiency, and high robustness to adapt to practical printing 
application. 
Key words: Halftoning, LMS, halftone image classification, naïve
Bayes classifier.

1. INTRODUCTION
Digital halftoning [1] is a technique to display grayscale images in 
two-tone binary, these halftone images can be misinterpreted as 
continue-tone images when viewing from a distance by the low-pass 
nature of the Human Visual System (HVS). Many different halftoning 
methods have been developed, including Direct Binary Search (DBS) 
[2]-[4], Ordered Dithering (OD) [5], Error Diffusion (ED) [6], Dot 
Diffusion (DD) [7]. Among these, DBS offers the best image quality, 
however it also gears with the highest computational complexity. 

Digital watermarking has many applications, the type of 
watermarking can be separated into two categories according to the 
visibility of the watermark embedded in a marked image. In this 
paper, a watermarking for halftone images, namely DBS-based 
Orientation Modulation (OM), belonging to the invisible category.
The proposed scheme adopts the concept of the DBS halftoning and 
the features of various texture angles to embed a watermark. 
Moreover, the Least-Mean-Square (LMS) algorithm and the naïve
Bayes classifier are catered for decoding the watermark. According to 
the experiment results, good image quality, excellent Correct Decode 
Rate (CDR), and high robustness can be achieved simultaneously. 
Moreover, due to the fact that the parallel high speed DBS is used, the 
processing speed is promising.

The rest of this paper is organized as follows. Section 2 provides 
the definitions of quality assessment methods for a marked image and 
a decoded watermark. Sections 3 and 4 introduce the proposed 
DBS-based OM encoder and decoder with the LMS-trained filter and 
naïve Bayes classifier. The experimental results are given in Section 5,
and Section 6 draws conclusions.

2. PERFORMANCE EVALUATIONS
The Human-visual-system Peak Single-to-Noise Ratio (HPSNR) is 
employed in this study for image quality estimation. This criterion is 
different from the traditional PSNR which does not consider the 
nature of HVS. Suppose a test halftone image of size PxQ is 
estimated, the HPSNR metric is defined as 
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where the variables , and , represent the pixel values of an 

original grayscale image and its corresponding halftone image, 
respectively; the value 255 denotes the maximum value of an 8-bit 
digital image; variable , denotes the coefficient of a 2-D
Gaussian filter, where the support region (R) size is set at 7x7. The 
exact , is derived as below,
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where the variables and denote the standard deviations along 
the two perpendicular directions. In this study, the summation of the 
derived Gaussian coefficients is normalized to 1 before it is used. The 
two parameters and are both set at 1.3.

The quality of a decoded watermark of size MxN is estimated 
with the following criterion, namely Correct Decoding Rate (CDR).
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where , and , denote an original watermark and a 
decoded watermark, respectively; operator denotes the exclusive
NOR (XNOR) operation. Notably, the watermarks used in this study 
contains various pixel-depths, and thus the “correctly decoding” only 
occurs when , = , .

3. PROPOSED DIRECT BINARY SEARCH-BASED ORIENTATION 
MODULATION ENCODING SCHEME

In this section, the proposed DBS-based OM encoding scheme is 
discussed, the corresponding flowchart is illustrated in Fig. 1(a). First, 
the grayscale host image of size PxQ is divided into many 
non-overlapped sub-images of size (P/M)x(Q/N). Each pixel of the 
watermark of size MxN is embedded into an individual sub-image. In 
this study, the bit-depth of a watermark can be ranged from 1- to 3-bit. 
This characteristic can drive the proposed method providing a higher 
data capacity. Notably, each divided sub-image can be processed 
simultaneously and offer good parallel property to improve the 
processing efficiency. 

In this study, the improved efficient DBS [3] method is further 
modified with the Orientation Modulation (OM) to achieve an 
additional watermarking function. The efficient DBS represents the 
nature of HVS generated by Nasanen’s Contrast Sensitivity Function 
(CSF) [8] in the spatial domain. The proposed is modified point 
spread function to represent different watermark values. The CSF 
used to derived ( , ) is replaced with the modified 2-D Gaussian 
distribution which can to easily control to generate halftones with 
various directions as below, 
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where the parameter denotes the quality factor which directly 
affects the image quality as will be discussed later; variables a, b, and 
c are defined as below,
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where the two empirical parameters and denote the standard 
deviations, and which are set at 1 and 2 respectively to simulate the 
ellipse distribution shape; variable (0°, 180°) denotes the angle, 
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which is controlled by various embedded watermark values. Notably, 
the proposed watermarking method can embed watermarks of various 
pixel-depths, for example, N-bit, where N=1 to 3 in this study, and 
each of them contains 2 colors. In this study, since each angle 
represents a specific color, for maximizing the distinguish capability
of each halftone texture angle, the difference between each pair of 
consecutive angles is defined as below, 

N2
180 , (8)

where 2 denotes the number of representing colors. For an instance, 
when a watermark of 2-bit pixel-depth (N = 2) is embedded in a 
halftone image, then each of the four angles 0°, 45°, 90°, and 135°
can be used to represent each of the 2 watermark colors. 

4. PROPOSED DECODING SCHEME WITH THE LEAST-MEAN-SQUARE 
FILTERS AND THE NAÏVE BAYES CLASSIFIERS

Figure 1(b) illustrates the decoding procedure of a marked sub-image. 
First, a marked sub-image is transformed into the frequency domain 
by the Fast Fourier Transform (FFT) for feature extraction using the 
proposed LMS-trained filters. Subsequently, the naïve Bayes 
classifier are adopted to extract the watermark information according 
these extracted features. The details are discussed below. 

4.1. Features extraction
Various texture orientations used on each sub-image embedding can 
yield a slightly different spatial dot distribution density which is not 
easily perceived by human eye. Yet, it can be obviously observed in 
the frequency domain. Figure 2 shows some instances, where the 
pattern on the right hand side of each pair is transformed by the FFT.
To distinguish the orientation characteristics, L LMS-trained filters 
corresponding to L orientations are trained and the procedure as 
described below, 
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where = { , , , } denotes the training halftone 
patterns in the frequency domain with a fixed size, where the halftone 
image is generated with a specific angle {1,2, , }, (in total L
different angles) and the constant D denotes the number of the 
training patterns in the frequency domain; variable ( , ) denotes 
the kth iterated trained filter with a support region R, where the size 
of R is identical to the size of the pattern training in the frequency 
domain. The summation of the trained filter is constrained to one to 
yield an energy convergent result. The ( , ) can be used to 
distinguish the target class ( ) and the other classes ( ) . In 
addition, , and the size is identical to the pattern in the
frequency domain. Notably, the target value (v) is determined by 
whether c is equal to tc. If yes, then v=255; otherwise, v=0. The target 
values are set to the theoretical maximum (255) and minimum (0) of 
a digital image to provide better discrimination results. In this training 
algorithm, the converge speed ( ) is set at 10 . The feature is 
calculated by
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where ( , ) denotes a marked halftone pattern ( , ) in the 
frequency domain, and the variable ( , ) denotes the coefficient 
of the LMS-trained filter with angle c.

4.2. Naïve Bayes classifier
Figure 3 shows the normalized feature distributions, in which each 
color line on each subfigure is averaged from 25600 halftone patterns 
in the frequency domain, and the distribution of each subfigure is 
obtained by one LMS-trained filter of a specific angle. Based on the 
observation of these results, two properties can be yielded: 1) the 
feature values which have the same class of the employed 
LMS-trained filters are higher than others classes, and 2) except for 
the class which belongs to the employed LMS-trained filter, other 
feature distributions also show the possibility for classification. These 
two observed characteristics are fully utilized to further improve the 
performance of the correct classification, and the naïve Bayes 
classifier which is derived from the Bayesian theorem is later proved 
as a powerful tool to cope with the object as described below:
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where I denotes information, and H denotes hypothesis. This theorem 
gives a relationship between the observed information and the future 
hypothesis. The equation can be rewritten as below for a practical 
application with number of L information and number of K
hypothesizes:
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The term ( , , , | ) can be assumed as independent since it 
is hard to collect enough information, and which will not affect the 
performance of the classification significantly [9]. Hence, Eq. (15)
can be further rewritten as below:
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where the denominator is obtained by the law of total probability. To 
adapt to the halftoning classification application, and suppose the 
orientation is divided by four , Eq. (16) is modified as below:
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where denotes the feature extracted by the LMS-trained filter of 
class n, and denotes the orientation k. The probability of ( )
is set as uniform since the occurrences of different orientations are 
assumed with equal probability. The term ( | ) can be obtained 
by conducting the feature statistics under the condition when the 
sub-halftone image is obtained by , and which is shown in Fig. 3.

According to the above derivation, the probabilities of the N
angles can be obtained. Subsequently, the Maximum A Posteriori 
(MAP) rule can be employed for deriving the class with the highest 
probability. As a result, the final class of a tested halftone image can 
be determined.

),,,,|(maxarg),,,(ˆ 421421 xxxcpxxxc cMAP
(18)

where the term ( | , , , ) is identical to that in Eq. (17). The 
denominator of ( | , , , ) can be neglected since it is 
identical to the halftoning scheme. The probability p(c) can be 
neglected as well since it is uniform. Thus, the MAP can be replaced 
with the Maximum Likelihood (ML) rule as below:

L
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by doing this, the computational complexity can be significantly 
reduced. 

The above decision manner, namely nonparametric decision
(NPD), adopts the statistic information consuming a lot of memory 
for storing the feature distribution. To ease this problem, the 
parametric decision (PD) method is adopted, and each of the feature 
distributions is modeled by a 1-D Gaussian distribution with the 
corresponding mean and standard deviation. 

5. EXPERIMENTAL RESULTS
In this section, the performance of the proposed DBS-based OM is 
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tested with many aspects as below. Figure 4 shows the CDRs of the 
sub-images of sizes 32x32, where each CDR is averaged from 25 test 
images of size 512x512, and the watermarks involve three different 
pixel depths. As introduced in Section 4, in total three different 
decoders are tested in the experiments: 
1) LMS: Due to the calculated features obtained by Eq. (13) directly 

indicate the similarity with the angle of the LMS-trained filter 
employed to calculate the feature value, the angle with the 
maximum feature value is considered as the classified result. 

2) Nonparametric decision (NPD): Classify with the naïve Bayes 
classifier, and the feature distribution is constructed by the 
statistics such as the results in Fig. 3.

3) Parametric decision (PD): The feature distributions employed by 
the naïve Bayes classifier are modeled by 1-D Gaussian 
distributions constructed by the corresponding means and standard 
deviations of the distributions from the nonparametric statistics. 

According to the observation, the quality factor ( ) in Eq. (4) is
directly proportional to CDR, since this parameter can control the 
orientation shape of a halftone pattern in the frequency domain.
Notably, the circle shape ( =0) has no direction, and thus  is 
expected to be greater to provide a better discrimination capability as 
it can be seen in Fig. 5. Comparing the above three different methods, 
the nonparametric decision method achieves the best CDR, since it 
provides more precise analytical capability of the feature distribution 
than that of the parametric decision. Since the DBS-based OM enjoys 
the benefit of parallelism, the processing speed is around 422 fps 
(frame/second) with images of size 512x512. According to the 
experiments, promising results can be yielded when the sub-image 
size is set at 32x32, and the parametric decision method is employed,
and thus the following experiments are performed with this setting.

Figure 6 shows the relationships among HPSNR, CDR, and 
quality factor . Notably, the HPSNR is used to measure the marked 
halftone image quality. Since the proposed method is able to embed 
watermarks of various pixel depths, thus three different pixel depths, 
1-bit, 2-bit, and 3-bit, are involved. According to the observation, a 
watermark with a lower pixel depth can yield better performance in 
terms of HPSNR and CDR. In addition, when the quality factor lower 
than 0.5, the marked image quality appear saturated, and the CDRs 
degrade rapidly. Thus, the quality factor is recommended setting at 
0.5 in this study. Figure 7 shows some practical marked results and 
the decoded watermarks. It can be seen that when the pixel depth of 
an embedded watermark is higher than 2-bit, the CDR cannot 
maintain 100%. Nonetheless, the decoded results are still promising 
(around 99% CDR) as shown in Fig. 7(d). Moreover, the enlarged 
parts as shown on the top-right corner of Fig. 7(b)-(d) indicate that, 
although the proposed encoder is processed independently, the 
marked images are not accompanied with blocking effect. 

Some distortions, such as cropping and print-and-scan, may be 
encountered in the practical applications. Figure 8 shows the CDRs 
under cropping distortion with various cropped sizes, where each data 
is averaged by 25 different test images, and watermarks of three 
different pixel depths are also involved in this experiment. Herein, a 
host image is of size 512x512. Among these, when the cropped sizes 
are less than or equal to 128, the CDRs can be maintained higher than 
90%, thus a higher cropped sizes should be avoided. Figure 9 shows 
the CDRs of decoded watermarks extracted from the marked images 
undergone the print-and-scan distortion. Normally, the print-and-scan 
channel involves zooming, shifting, rotation, and dot gain darkening 
effect, and which cause severe distortions. It can be seen that the 
resolution of printing/scanning is inversely/directly proportional to 
the CDR. According to the experiments, the proposed method is 
sufficiently robust to be applied on practical applications. 

Table I shows the comparisons among the former related 
methods and the proposed method, where the notations + and –
represent advantage and shortcoming, respectively. In this 
comparison, the proposed method can provide excellent advantages in 
terms of image quality, robustness, processing efficiency, and data 
capacity, and thus prove that the proposed method can present 

excellent performance to address practical halftoning security issues. 

6. CONCLUSIONS
This paper presents the DBS-based OM method to hide multi-bit 
watermarks into halftone images. The DBS is a halftoning scheme 
which can generate the best halftone patterns, while the processing 
speed is its deficiency. The DBS-based OM has the parallelism 
property, and thus which can gear with high quality and processing 
speed simultaneously. To decode an embedded watermark, the 
LMS-trained filters and the naïve Bayes classifier are catered to 
achieve good decoding rates. Moreover, the proposed parametric 
decision strategy can significantly reduce the memory consumption 
while yield promising decoded results. As documented in the 
experimental results, the proposed method provides excellent image 
quality, high processing efficiency, high embedding capacity, and 
sufficient robustness to guard against distortions induced from the 
cropping and print-and-scan which frequently happened in halftone 
printing. 
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Fig. 1. Conceptual flowchart of the proposed (a) DBS-based OM 
encoding scheme, (b) decoding scheme.
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(a)           (b)           (c)          (d)
Fig. 2. Four marked sub-images (left) and the corresponding patterns 
in the frequency domains (right), where the sub-images are generated 
by the proposed DBS-based OM and the embedded watermark is with 
2-bit pixel depth, the parameter of the quality factor is set at 2. 
These sub-images are marked with (a) 0°, (b) 45°, (c) 90°, and (d) 135°, respectively. 

Fig. 3. Feature distributions obtained with angle 0° and 90°
LMS-trained filters, each of feature distributions is constructed by 
25600 halftone patterns in the frequency domain.

Fig. 4. Averaged CDR comparisons under various numbers of bits.

0.25    0.5    0.75     1     1.25    1.5    1.75    2
Fig. 5. Eight different quality factors with identical 45°.

Fig. 6. The relationships among quality factor ( ), image quality 
(HPSNR), and decoded rate (CDR).

Grayscale host images          HPSNR=31.5 dB  CDR=100%
(a)                        (b)

HPSNR=31.7 dB  CDR=100%  HPSNR=31.9 dB  CDR=99.4%
(c)                        (d)

Fig. 7. Practical marked results. (a) Original host images of size 
2048x2048. The marked images and the decoded watermarks with (b) 
1 bit, (c) 2 bits, and (d) 3 bits, and the enlarged parts are of size 64x64.
(host/marked images are printed at 600 dpi, and watermarks are 
printed at 72 dpi)

Fig. 8. CDRs under cropping attack with various cropped sizes, 
including 32x32 to 256x256. The size of a host image is 512x512. 

Fig. 9. Averaged CDRs of the decoded watermarks undergone 
print-and-scan distortion. Watermarks of various pixel-depths are 
adopted.

TABLE I COMPARISONS AMONG VARIOUS FORMER METHODS AND THE 
PROPOSED METHOD. (ADVANTAGES (+) AND SHORTCOMINGS (-))

Image 
quality Robustness Processing 

efficiency
Data 

capacity Additional special features

Knox
[10] - + + - Survive over print-and-scan 

distortion.
Fu-Au
[11] - - + + Secret sharing strategy to improve 

the security
Pei et al. 

[12] - + - + Poor image quality

Guo et al. 
[13] + + + - Low data capacity 

Guo-Liu 
[14] + - + + High data capacity while low 

robustness

Proposed 
method + + + +

Able to embed multi-bit 
watermark and overcome 
print-and-scan distortion. The 
parallelism also improves the 
processing speed with high 
quality DBS-based scheme
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