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ABSTRACT

In the existing prediction-error expansion (PEE)-based re-
versible image watermarking schemes, the capacity parame-
ters are determined in a recursive manner by gradually turn-
ing these parameters to fit the payload. This class of method
needs multiple rounds of embedding iterations, and hence, it
is computationally inefficient. In addition, when multiple ca-
pacity parameters need to be handled, the previous methods
are generally not capacity-distortion optimized. In this work,
we formulate the task of determining the capacity parameters
as a capacity-distortion optimization problem, which can be
shown to be convex. We also prove that under some condi-
tions, even simple analytical solutions exist.

Index Terms— Reversible Watermarking, prediction-
error expansion, difference expansion, capacity-distortion
optimization

1. INTRODUCTION

Reversible watermarking is a special class of data hiding tech-
nique, which ensures perfect reconstruction of the original
cover signals after watermark extraction. Reversible image
watermarking is an ideal solution for many critical applica-
tions, e.g., protecting the image integrity in medical imaging
and remote sensing systems.

To achieve reversible image watermarking, early meth-
ods were based on lossless compression of certain image fea-
tures, creating vacancies for embedding the payload [1, 2].
However, these methods can only provide rather low capacity,
and usually lead to severe degradation of the image quality.
Among the existing reversible image watermarking schemes,
the prediction-error expansion (PEE)-based approaches [3–
5] have received growing attention due to its excellent em-
bedding capacity and good controllability of the distortions
caused by watermarking embedding. PEE is actually a gener-
alization of the difference-expansion (DE) technique initially
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developed by Tian [6]. Compared with DE-based methods,
PEE exploits the prediction error, instead of the difference of
two adjacent pixels, for expansion embedding. The superior
de-correlating ability of image predictors such as GAP [7] and
MED [8] enables efficient exploitation of spatial redundancy
of images. To reduce the overhead caused by location map,
Thodi and Rodriguez also suggested to incorporate histogram
shifting with expansion embedding [3]. In [4], Hu et al. pro-
posed to use payload dependent location map to achieve fur-
ther compression of the location map, and hence, achieved
better capacity-distortion performance.

In PEE-based schemes, upon getting the prediction errors,
we can obtain the prediction-error histogram, which is typi-
cally modeled as a zero-mean Laplacian distribution. Then
the so-called capacity parameters are determined to divide the
histogram into inner region and outer region. For the pixels in
the inner region, expansion operations are conducted to em-
bedded 1 bit for each pixel. For the pixels in the outer region,
shifting operations are applied to avoid ambiguity, while no
message bits are embedded. Within this framework, a key is-
sue is to determine the capacity parameters which control the
embedding capacity and influence the distortions caused by
watermark embedding. In the existing methods, the capacity
parameters are determined in a recursive manner by graduat-
ing turning these parameters to fit the payload. This class of
method needs multiple rounds of embedding iterations, and
hence, it is computationally inefficient. This is especially the
case if we need to operate with several histograms simulta-
neously, as that done in [5], where more capacity parameters
have to be determined.

In this work, we address the problem of optimally deter-
mining the capacity parameters in an efficient manner. We
formulate the task of finding the capacity parameters as a
capacity-distortion problem, which can be shown to be con-
vex. We also prove that under some conditions, even sim-
ple analytical solutions exist. This analytical framework can
also be readily extended to handle multiple histograms where
more capacity parameters need to be determined. Preliminary
experimental results are provided to validate our findings.
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The rest of the paper is organized as follows. Section
2 briefly introduces the PEE-based reversible image water-
marking. In Section 3, we present the formulation of the
capacity-distortion optimization problem and prove its con-
vexity. Section 4 gives the experimental results that verify
our theoretical findings. We conclude in Section 5.

2. PEE-BASED REVERSIBLE IMAGE
WATERMARKING

A common feature of the reversible image watermarking is
the use of some de-correlating operator, e.g., image predic-
tors GAP [7] and MED [8], that creates a feature set with
majority of its elements having small magnitudes. The data
embedding is accomplished by expanding these features to
create vacancies into which the message bits are embedded.
The distortion resulting from expansion embedding mainly
depends on the magnitudes of those feature elements that are
expanded. Hence, it is desirable to have as many as possible
feature elements with small magnitudes. In the reversible im-
age watermarking schemes via prediction error expansion, the
prediction errors are the feature elements on which expansion
embedding is conducted.

More specifically, each pixel of the host image I is pre-
dicted by using the predictor, and the prediction error can be
computed as

e = I − Î (1)

where Î is the prediction. It should be noted that the pre-
diction Î is based on the casual past pixels, and hence, the
decoder can get the same prediction without any ambiguity.

Upon getting the prediction errors, the watermark embed-
ding can be performed using the following three steps.

Step 1:) Expansion embedding
If the prediction error e belongs to the inner region I =

{e|e ∈ [Tl, Tr)}, then expand it to

ew = 2e+ w (2)

where Tl and Tr are the capacity parameters controlling the
embedding capacity, and w ∈ {0, 1} denotes the message bit
embedded. The watermarked pixel value then becomes

Iw = Î + ew = I + e+ w (3)

Step 2:) Histogram shifting
If the prediction error e belongs to the outer region O =

{e|e ∈ (−∞, Tl) ∪ [Tr,+∞)} , then the corresponding pixel
will not carry any message bit, and the prediction error is sim-
ply shifted to avoid overlapping with the expanded inner re-
gion. In this case, the watermarked pixel value becomes

Iw =

{
I + Tr for e ≥ Tr

I + Tl for e < Tl
(4)

In many existing schemes, it was assumed that Tr = −Tl =
T > 0. It can be easily seen that larger T leads to larger em-
bedding capacity, but at the same time incurs larger distortion.

Step 3:) Location map construction
The above expansion and shifting operations would result

in some watermarked pixel values that are outside the range
[0, 255], causing the overflow/underflow (overflow in short)
problem. A simple way of solving this problem is to record
the locations of these problematic pixels, and avoid perform-
ing expansion/shifting operations on the associated prediction
errors. The location map needs to be losslessly compressed
and embedded into the host as auxiliary information to ensure
reversibility. The employment of the location map decreases
the effective embedding capacity. Fortunately, the overhead
induced by the location map is negligible, especially at the
low embedding rate region.

At the decoder side, upon getting the watermarked im-
age Iw, the task is to retrieve the embedded message bits and
restore the original image in a lossless fashion. Since the pro-
cedure is somewhat similar to that conducted at the encoder,
we omit the details here.

3. CAPACITY-DISTORTION OPTIMIZATION FOR
FINDING THE CAPACITY PARAMETERS

In the existing schemes, the capacity parameters Tl and Tr

are obtained recursively by gradually decreasing Tl and in-
creasing Tr to fit the payload. Since this class of method
needs multiple rounds of embedding iterations, it is compu-
tationally inefficient. In this work, we demonstrate that the
optimal capacity parameters can be well estimated by solv-
ing a capacity-distortion optimization problem. In the case
that Tl = −Tr, even a simple close-form analytical solution
exists.

As a well-known fact, the prediction error e can be satis-
factorily modeled as a zero-mean Laplacian distribution

p(x) =
1

2b
exp

(
− |x|

b

)
(5)

where b > 0 is a scale parameter.
Since the prediction is based on the original, unwater-

marked pixels, all the prediction errors of the host image are
available prior to the watermark embedding. Given the pre-
diction error samples, the scale parameter b can be optimally
estimated in maximum likelihood (ML) sense as

b =
1

N

N∑
i=1

|ei| (6)
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where ei and N denote the ith sample and the total number
of samples of the prediction error. It is assumed that b > 0.5,
which has been verified experimentally to be true for most
natural images. As mentioned previously, the number of pix-
els with overflow problem is generally negligible compared
with the payload, especially in the low embedding rate re-
gion, and hence, the watermarking embedding capacity C can
be estimated as the number of pixels in the inner region I,
which in mathematical form reads

C = N ·
∫ Tr

Tl

p(x)dx

= N − N

2
(L+R) (7)

where p(x) is the p.d.f of the Laplacian distribution given in
(5),

L = exp
{Tl

b

}
(8)

and

R = exp
{
− Tr

b

}
(9)

As Tl ≤ 0 and Tr ≥ 0, we have 0 < L,R ≤ 1.
Let us then calculate the distortion caused by the water-

marking embedding and histogram shifting. From (4), we
compute the distortion incurred by histogram shifting as

Ds = (Iw − I)2 =

{
T 2
r for ew ≥ Tr

T 2
l for ew < Tl

(10)

On the other hand, it follows from (3) that the distortion
due to the expansion embedding can be expressed as

De = (e+ w)2 = e2 + 2ew + w2 (11)

Combining (10) and (11) gives the expected distortion

Ee,w(D)

= N · T 2
r ·

∫ +∞

Tr

p(x)dx +N · T 2
l ·

∫ Tl

−∞
p(x)dx

+N ·
∫ Tr

Tl

p(x)
[
e2 + 2eEw(w) + Ew(w

2)
]
dx

(12)

where the expectation is taken over e and w, and Ew(w) and
Ew(w

2) denote the first and the second moments of the ran-
dom variable w. Noticing (5) and the fact that w takes 0 and
1 with equal probabilities, (12) can be further simplified as

Ee,w(D)

= N ·
[
(b2 − 0.5b)L lnL+ (b2 + 0.5b)R lnR

−(b2 − 0.5b+ 0.25)L− (b2 + 0.5b+ 0.25)R

+2b2 + 0.5
]

(13)

Upon getting the embedding capacity and the expected
distortion, we can formulate the problem of finding the opti-
mal Tl and Tr as

min Ee,w(D)

subject to: C ≥ τ (14)

where τ is the payload. Plugging in (7) and (13) into (14)
gives

min
L,R

{
(b2 − 0.5b)L lnL+ (b2 + 0.5b)R lnR

−(b2 − 0.5b+ 0.25)L− (b2 + 0.5b+ 0.25)R

+2b2 + 0.5
}

subject to: L+R ≤ 2(N − τ)/N (15)

Since x lnx is convex because it is the 1-D entropy func-
tion [9], and b > 0.5 is a constant, the objective function of
(15) is convex. In addition, the constraint of (15) is linear
with respect to L and R. Therefore, the capacity-distortion
optimization problem in (15) is convex, which permits effi-
cient numerical solution.

A special case of the above capacity-distortion optimiza-
tion is when Tl = −Tr, which leads to L = R. In this case,
(15) becomes

min
L

2b2L lnL− (2b2 + 0.5)L+ 2b2 + 0.5

subject to: L ≤ (N − τ)/N (16)

It can be easily proved that the objective function of (16)
is a decreasing function with respect to L, and hence, the op-
timal solution is given by

L� = (N − τ)/N (17)

which follows that

T �
r = −T �

l =
[
(b · ln N

N − τ
)
]

(18)

where [x] returns the nearest integer of x.
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Fig. 1. Comparison between T and T � for Lena image.

4. EXPERIMENTAL RESULTS

To verify the above analytical results, we compare the esti-
mated capacity parameters with the actual optimal ones. For
simplicity, we only consider the case that Tr = −Tl = T ,
where T ≥ 1. Fig. 1 shows the comparison between the esti-
mated parameter T � obtained using (18) and the truly optimal
T , for the test image Lena with different embedding payload.
It can be seen that the estimation of the capacity parameter
is very accurate when T ≤ 11. When T becomes larger, the
estimated T � differs T by one. This is because when T is
very large, the overhead of the location map becomes non-
negligible, and hurts the accuracy of the capacity estimation
in (7). We also have tried some other test images, and similar
observations can be obtained.

5. CONCLUSIONS

The determination of the capacity parameters is an impor-
tant issue in the PEE-based reversible image watermarking
schemes. In this paper, we have shown that these capacity
parameters can be optimally determined under a capacity-
distortion optimization framework. Due to the convexity of
the proposed capacity-distortion optimization problem, the
capacity parameters can be obtained efficiently. Under some
conditions that are commonly satisfied, even simple analytical
solutions exist.

In fact, our proposed capacity-distortion optimization
framework can be used to determine the capacity parame-
ters when multiple histograms need to be handled. In such
cases, the objective function and the constraint of (15) would
become vector form; but the problem can be shown to be
still convex. Therefore, the capacity parameters for multiple
histograms can be efficiently found as well.
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