
SECURITY OF CASS DATA HIDING SCHEME UNDER THE SCENARIOS OF KMA AND
WOA

Dong Zhang� Dah-Jye Lee†

� School of Information Science and Technology, Sun Yat-sen University, China
†Department of Electrical and Computer Engineering, Brigham Young University, United States

ABSTRACT

This paper presents a theoretical analysis on the security

of CASS (Correlation-and-bit-Aware Spread-Spectrum) data

hiding scheme for the first time. By evaluated with the resid-

ual entropy of the secret key and the mutual information

between the observations and the secret key, the security of

CASS is investigated under the scenarios of Known Message

Attack and Watermarked Only Attack. In addition, this paper

compares data hiding security between CASS and the con-

ventional Additive Spread-Spectrum (Add-SS) data hiding

scheme. Theoretical analysis and simulation results show

CASS scheme outperforms Add-SS scheme in terms of data

hiding security when Document to Watermark Ratio (DWR)

is low and performs comparably when DWR is high.

Index Terms— Security, CASS data hiding scheme, Ad-

ditive Spread-Spectrum, Information leakage

1. INTRODUCTION

In recent years, security has attracted considerable attention

from the data hiding community. Security of a data hiding

scheme measures its performance against attacks aiming at

gaining knowledge about the secret key [1] with the assump-

tion of Kerchhoffs’ principle which states that all functions

should be declared as public except for the secret key [2][3].

Thus the security of a data hiding algorithm is equivalent to

that of the secret key and can be evaluated by the difficulty of

estimating the secret key [4].

As one of the most popular approaches, spread-spectrum

(SS) based method is widely used in many data hiding

schemes. Recently, a novel SS-based data hiding approach

named Correlation-and-bit-aware Spread-Spectrum (CASS)

was proposed [5]. This new approach explores the correla-

tion between the host signal and the secret key as well as

the information bit to be embedded into the host signal as

the side information in the encoder. It has been shown that

CASS is superior to its counterpart, the conventional Additive

Spread-Spectrum (Add-SS) scheme, in terms of watermark-

ing decoding performance [5].

This paper explores the security of CASS that has not

been studied in the past. From the perspective of Shannon

information theory, this paper evaluates the security of CASS

with the residual entropy of the secret key given N -time

observations and the mutual information between the secret

key and the observations. The security of CASS under both

Known Message Attack (KMA) and Watermarked Only At-

tack (WOA) is investigated. By comparing with Add-SS

scheme, the result of this work shows that CASS outperforms

Add-SS on security when Document to Watermark Ratio

(DWR) is low and performs comparably when DWR is high.

2. METHOD

When analyzing security of data hiding schemes, it is as-

sumed that the attacker is able to access the watermarked ob-

servations and possibly other kinds of information. For each

observation, it is assumed that the same key is used [1][2].

Security analysis also assumes there is no noise imposed onto

the observations [3].

Depending on the information the attacker possesses,

several security attacking scenarios have been defined by re-

searchers [1][2]. Among these scenarios, KMA and WOA

are the two most critical cases. KMA is the type of attack that

the attacker has access to the observations and corresponding

messages [4]. WOA is the type of attack that the attacker has

access only to the watermarked observations [4]. KMA posts

the hardest challenge to the watermarker whose responsibility

is to keep the data hiding system safe. Whereas, WOA is the

most difficult scenario to the attacker. This paper focuses

discussions on KMA and WOA scenarios.

Denote Z as the secret key and YN = Y1, . . . ,YN the

N -time observations. The security of CASS scheme is mea-

sured by the residual entropy of the secret key given N -time

observations h(Z|YN ), which represents the uncertainty of

the secret key given the observations, and the mutual infor-

mation between the secret key and the N -time observations

I(Z;YN ), which represents the information leakage of the

secret key from observations. From Shannon information

theory [6], we have h(Z|YN ) = h(Z) − I(Z;YN ) and

I(Z;YN ) = h(Y)− h(YN |Z) where h(·) is the differential

entropy of a random vector and h(A|B) is the conditional

entropy of A given B. It can be seen that the residual entropy

of the secret key depends on the entropy of the secret key
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h(Z) and the mutual information between the secret key and

observations I(Z;YN ).
Assuming the secret key with length Nv follows Gaussian

independent and identical distribution (i.i.d.) with zero mean

and variance σ2
z , i.e. Z ∼ N(0Nv

, σ2
zINv

). The uncertainty

of the secret key is evaluated by its differential entropy which

can be obtained as

h(Z) =
Nv

2
log(2πeσ2

z) (1)

where the logarithm is taken to base e [7]. Thus, the residual

entropy of the secret key is determined only by I(Z;YN ).
The larger the I(Z;YN ) is, the lower security level the data

hiding scheme will have.

In the analysis presented in the following sections, we

assume all observations are independent to one another and

every observation provides the same amount of information

about the secret key [2]. The discussion on security is then

simplified to concerning only one observation is available to

the attacker [2].

3. SECURITY OF CASS

3.1. The CASS scheme

Assume that the host signal x = [x1, x2, . . . , xNv ]T follows

Gaussian i.i.d. with zero mean and variance σ2
x, i.e. X ∼

N(0Nv
, σ2

xINv
), where INv

and 0Nv
are the Nv × Nv iden-

tity matrix and zero vector with dimension Nv , respectively.

Nv is the number of the host coefficients used for conveying

one information bit. The embedded message M is assumed

to be selected from a binary set m ∈ {−1, +1} with equal

probability. The secret key Z is independent of the host X
and the message M . The watermarked signal is denoted as

y = [y1, y2, . . . , yNv
]T . Thus the scheme of CASS can be

expressed as

y =

⎧⎪⎪⎨
⎪⎪⎩

x + zA1, if zT x ≥ 0,m = +1
x − zA2, if zT x ≥ 0,m = −1
x − zA1, if zT x < 0,m = −1
x + zA2, if zT x < 0,m = +1

(2)

where A1 and A2 (0 < A1 < A2) are two amplitude levels

[5]. The distortion and DWR of CASS embedding in (2) can

be expressed as (3) and (4), respectively.

Dw =
A2

1 + A2
2

2
σ2

z (3)

DWR = 10 log10

σ2
x

A2
1+A2

2
2 σ2

z

(4)

3.2. Under KMA scenario

Under KMA scenario, the attacker is able to gather a col-

lection of observations {Yi}, which is watermarked with

the same secret key, and the attacker also knows the corre-

sponding messages {mi}. Thus the information leakage of

the secret key will turn to I(Z;YN |MN ) = h(YN |MN ) −
h(YN |Z,MN ). When one-time observation is considered,

we have

I(Z;Y|M) = h(Y|M) − h(Y|Z,M) (5)

For the convenience of description, we assume the corre-

lation between the host and secret key is positive. The same

result can be obtained when the correlation is negative. Con-

sidering the embedding scheme of CASS (2) and the assump-

tion on host and the secret key, the observation is Gaussian

with zero mean and covariance A2
1σ

2
zINv

+σ2
xINv

given m =
+1 and A2

2σ
2
zINv

+σ2
xINv

given m = −1. Since h(Y|M) =∑
M p(M = m)h(Y|M = m), and the embedded message

takes the values ’+1’ and ’-1’ with the same probability, i.e.

p(M = +1) = p(M = −1) = 1
2 , the value of h(Y|M)

can be calculated analytically. The second term on the right-

hand side of equation (5) can also be obtained. Given the

secret key and the embedded message, the observation is also

a Gaussian, i.e. Y ∼ N(A1z, σ2
xINv

) when m = +1 and

Y ∼ N(−A2z, σ2
xINv

) when m = −1. Thus we can ob-

tain the value of the information leakage of the secret key in

CASS scheme by (6).

I(Z;Y|M) =
∑
M

p(M = m)h(Y|M = m)

−
∑
M

p(M = m)h(Y|Z,M = m)

=
Nv

4
log(1 +

A2
1σ

2
z

σ2
x

)(1 +
A2

2σ
2
z

σ2
x

) (6)

Formula (6) shows that the information leakage of the se-

cret key in CASS depends on the length of the secret key,

the amplitude levels A1 and A2, and the covariance ratio be-

tween the secret key and the host. When the distortion is con-

strained, different values assigned to A1 and A2 will lead to

distinct security on CASS.

3.3. Under WOA scenario

The information leakage about the secret key under WOA sce-

nario can be expressed as (7).

I(Y;Z) = h(Y) − h(Y|Z) (7)

The first term on the right-hand side of (7) is the differen-

tial entropy of observation. The distribution of Y can be

expressed as the summation of p(Y,M), which is the joint

distribution of Y and M . The summation is performed with

respect to M . Considering p(Y,M) = p(Y|M)p(M),
p(Y|M = +1) = N(0Nv , σ2

xINv + A2
1σ

2
zINv ), p(Y|M =

−1) = N(0Nv , σ2
xINv + A2

2σ
2
zINv ), and the embedded mes-

sage takes the values ’+1’ and ’-1’ with the same probability,
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the distribution of Y is a mixture of Gaussians as shown in

(8).

p(Y) =
∑
M

p(Y|M = mi)p(M = mi)

=
1
2
[N(0Nv , σ2

xINv + A2
1σ

2
zINv )

+ N(0Nv
, σ2

xINv
+ A2

2σ
2
zINv

)] (8)

It has been proved that there is no closed form for the dif-

ferential entropy of a random vector which is distributed as a

mixture of Gaussians [8]. Given the zero mean and the vari-

ance of the Gaussian components, h(Y) can not be derived

from its definition analytically. Numerical computation is re-

quired to sovle for h(Y). It can be seen that the distribution

of Y is composed of two Gaussians, both with zero mean.

Since the two Gaussians appear with the same probability, the

differential entropy of Y only depends on the covariance of

them.

Solving the second term on the right-hand side of (8) also

needs numerical computation. The reason is shown below in

(9).

p(Y|Z) =
∑
M

p(Y|Z,M)p(M |Z)

=
∑
M

p(Y|Z,M)p(M)

=
1
4
N(A1z, σ2

xINv
) +

1
4
N(A2z, σ2

xINv
)

+
1
4
N(−A1z, σ2

xINv
) +

1
4
N(−A2z, σ2

xINv
)

(9)

The first equation of (9) is from the definition of conditional

probability. The second equation of (9) is due to the indepen-

dence between the embedded message M and the secret key

Z, i.e. p(M |Z) = p(M). Equation (9) shows the distribu-

tion of Y given the secret key is also a mixture of Gaussians

and numerical computation is required to obtain the value of

h(Y|Z). Similar to the notes on the computation of h(Y), it

can be seen from (9) that the differential entropy of Y given

the secret key will only be dependent on the means of each

Gaussian components for a fixed covariance of host.

4. SIMULATION AND DISCUSSION

The simulation results were obtained with setting the length

of secret key as 256 unless stated otherwise. The information

leakage of the secret key was averaged into all dimensions.

Since the logarithm used in analysis is taken to the base e, the

information leakage is expressed in nat.
The information leakage of the secret key vs. DWR under

KMA scenario is shown in Fig.1, where different amplitude

values A1 are investigated. We denote that η = A2
1

A2
1+A2

2
, and
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Fig. 1. Information Leakage vs. DWR under KMA scenario.

1 − η = A2
2

A2
1+A2

2
. Considering 0 < A1 < A2, we have the

range of η, i.e. 0 < η ≤ 1
2 . It can be seen in Fig.1 that a

small η (for example 0.1) has less information leakage than

a large η (for example 0.5). As DWR increases, or the em-

bedded power decreases, the secret key information leakage

decreases for the same η. Note that the Add-SS watermark-

ing scheme can be considered as a special case of CASS when

A1 = A2, or η = 0.5. Fig.1 shows that the security of Add-

SS is lower than CASS because Add-SS leaks more informa-

tion of the secret key for the same DWR.

For the Add-SS scheme, it has been shown in [2] that for

one observation, the information leakage of the secret key

can be expressed as I(Y;Z|M) = Nv

2 log(1 + σ2
z

σ2
x
). For a

fare comparison, the same DWR is assumed for Add-SS and

CASS schemes, e.g. DWR= 10 log10(
1
C ), in which C is a

fixed value. Then the secret key information leakage for Add-

SS is obtained by (10).

IAdd−SS(Y;Z|M) =
Nv

4
log(1 + 2C + C2) (10)

For CASS, with the same DWR, which implies
A2

1+A2
2

2 σ2
z =

Cσ2
x, the secret key information leakage can be computed by

(11).

ICASS(Y;Z|M) =
Nv

4
log(1 +

2A2
1C

A2
1 + A2

2

)(1 +
2A2

2C

A2
1 + A2

2

)

=
Nv

4
log[(1 + 2Cη)(1 + 2C(1 − η))] (11)

It can be seen that (1 + 2Cη)[1 + 2C(1 − η)] ≤ (1 +
2C + C2) for 0 < η ≤ 1

2 . The equality is true when η = 1
2 ,

that means A2
1 = A2

2. This implies that, for the same DWR,

the Add-SS scheme will not leak less information about the

secret key than the CASS scheme, i.e. IAdd−SS(Y;Z|M) ≥
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ICASS(Y;Z|M). For a high DWR, the difference in the se-

cret key information leakage induced by different values of η
is rather small because the embedded power of the watermark

is rather weak compared with the power of the host signal.
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Fig. 2. Comparison between Add-SS and CASS under KMA

scenario.

Another experiment was performed to compare the secret

key information leakage vs. different η values with a fixed

DWR, which was set to 30 dB. In Fig.2, the solid line marked

with circles is the secret key information leaked from Add-

SS and the dashed line marked with crosses is the secret key

information leaked from CASS. Note that the security of Add-

SS scheme is not affected by η because the amplitudes for

embedding ’+1’ and ’-1’ are set to be equal. The secret key

information leaked from CASS was much less than Add-SS.

The performance difference in security becomes smaller as

η increases, and turns to zero when η equals to 0.5 at which

CASS is actually equivalent to Add-SS scheme.
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Fig. 3. Information leakage vs. DWR under WOA scenario.

Similar comparison was performed for WOA scenario.

The curves showing the secret key information leakage vs.

DWR for different η values are shown in Fig.3. Our result

shows that the relation between the secret key information

leakage and η is similar to the KMA scenario.

5. CONCLUSION

This paper investigates the security of CASS under both

KMA and WOA scenarios from the perspective of Shan-

non information theory. Theoretical analysis and simulations

show the information leakage of the secret key in CASS is not

larger than Add-SS scheme. This result proves that CASS has

a higher security level than Add-SS. Similar to the relation

shown in the comparison of decoding performance [5], the

security of CASS outperforms Add-SS distinctly when DWR

is low, and has comparable performance when DWR is high.
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