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Abstract—A novel suboptimal hiding algorithm for binary
data based on weight approximation embedding, WAE, is pro-
posed. Given a specified embedding rate, this algorithm exhibits
an advantage of efficient binary embedding with reduced em-
bedding complexity. The suboptimal WAE algorithm performs
an embedding procedure through a parity check matrix. The
optimal embedding based on maximal likelihood algorithm aims
to locate the coset leader to minimize the embedding distortion.
On the contrary, the WAE algorithm looks for a target vector
close to the coset leader in an efficiently iterative manner. Given
an linear embedding code C(n, k), the embedding complexity
using the optimal algorithm is O(2k), while the complexity in
the suboptimal WAE is reduced to O(sk) where s is the average
iterations.

I. INTRODUCTION

As the demand of the public network communication in-
creases significantly and a large amount of digital data must
be transmitted in a number of secret ways, the technique of
data hiding [1] becomes an important research area. Simply
speaking, data hiding refers to the technique embedding data
into a cover object, e.g., image, video, or audio, etc. The
applications of data hiding, watermarking and steganography,
are found in many aspects, such as copyright protection and
content authentication. Besides, more concerns are raised in
data hiding technique, such as capacity, distortion, robustness,
perceptual, etc. The focus of this paper is on the issue of
noninvertible embedding scheme and on the analysis of two
major concerns, the capacity and distortion.
Binning is a coding technique of great significance in

information theory. The data classification is reached by means
of a parity check matrix in a binning method, referred to as
matrix embedding [2], [3], [4]. The binning methods can be
roughly classified into informed coding and informed embed-
ding, where the cover object is used as the side information
during data embedding. Generally speaking, matrix embedding
using a parity check matrix leads to a less level of distortion
than those suboptimal embedding algorithm [5], [6], [7], due
to the structure of a linear code. Moreover, the data embedded
based on parity check matrix can be extracted in the receiver
simply by a multiplication operation between the parity check
matrix and received vector. Furthermore, with an existing

1This work was supported by Grant NSC-99-2221-E-005-081-MY2.

parity check code, the embedding rate with respect to a
minimum level of distortion can be determined accordingly.
The matrix embedding method is related to the construction
of the covering codes with the following two concerns.
1) Finding a good covering codes is equivalent to a good
matrix embedding method.

2) A low complexity matrix embedding method in data
hiding is equivalent to a fast decoding algorithm of this
covering code.

Usually, a maximum likelihood decoding has high decoding
complexity for a linear code with large length. Data hiding
with matrix embedding from a linear code also suffers the
same problem using binning methods. Besides, it is unlikely
to employ the optimum embedding, i.e., maximum likelihood
algorithm, to find a codeword out of a parity check code.
This paper embeds binary data in a manner of sub-optimal
embedding that low embedding complexity is attained.
The rest of this paper is organized as follows. In Section

II, we briefly discuss the theory and distortion limit of binary
data hiding. Section III describes our major work on proposed
sub-optimal iterative embedding algorithm. In Section IV,
we provide experimental results and constructive discussions.
Finally, we state our conclusions in Section V.

II. BOUNDS ON CODING THEORY
The binary data hiding refers to an issue where the average

level of distortion d of an embedding strategy can be deter-
mined by a binary linear embedding code (n, k) at a given
embedding rate Re = (n− k)/n. The lower bound dmin of d
is thus estimated using the rate-distortion function of a binary
symmetric source. The coding theory related knowledge is
discussed here.

A. Rate-distortion function of binary symmetric source
A (n, k) binary linear embedding code C is characterized

by the use of a parity check matrix H ∈ {0, 1}m×n, where
m = n−k. Assuming that the code rate is R = k/n, the code
C is of size |C| = 2nR. Given a binary symmetric source
(BSS) and a n bit source sequence u ∈ {0, 1}n, the Hamming
weight distortion is defined as

d(û, u) =
E[d(û, u)]

n
=

D

n
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where û represents a quantized codeword existing in the code
C , and D = E[d(û, u)] is the average hamming distortion
between û and u per each n bits simple block. For a good
(n, k) linear block code, and sufficiently large n, the minimum
average distortion is less than

d(û, u) � δ

and
δ = h−1(m/n) = h−1(1 − R)

where h−1(∗) is the inverse function of the binary entropy
function h. Assuming that D/n represents the average distor-
tion of each bit among a n-bit sequence, D is thus the average
distortion of each binary sequence and can be expressed
as D = E[w(e)]. The lower bound δ of each bit average
distortion in blocks can be written as d = D/n ≥ δ. When
performing the binary data embedding of a sequence of n bits,
the embedding efficiency is defined as

η =
1 − R

d
=

m

D

In the case of a matrix embedding use the suboptimal de-
coding strategy instead of maximum likelihood decoding, the
embedding scheme may lose some embedding efficiency due
to the suboptimal decoding strategy. For a (n, k) linear code
C, the embedding efficiency between both the optimal, i.e.
Maximum likelihood decoding, and the suboptimal algorithms
can be hence related as

m

nh−1(Re)
≥ m

Dopt
≥ m

Dsub

where Dopt and Dsub represent the average distortion es-
timated for each block in the optimal algorithm and the
suboptimal algorithm, respectively. The above equation can
be express in an alternative form as ηδ ≥ ηopt ≥ ηsub.

B. Optimal embedding algorithm
A code is referred to as syndrome codes due to the use of

a parity check matrix. It is built with two main goals, that is,
to 1). find a well defined coding structure or a well behaved
parity check matrix, and 2). perform decoding through efficient
decoding algorithm. Given a host vector and a logo vector
intended for embedding, the syndrome of the host vector must
be firstly found and then added to that of the logo vector as a
way to acquire a toggle syndrome. Ultimately, the coset leader,
corresponding to the toggle syndrome, can be found using the
ML decoding. The coset leader is then added to the host vector
as a way to yield a closest vector, into which a secret logo
vector is embedded. This is illustrated as Fig. 1.
A (n, k) linear block code C can be characterized with a

parity check matrix H of size (n − k) × n as follows.

C = {r|Hr = 0}
where the sequence r ∈ Fn

2 . Derived from the above equation,
the syndrome s of the sequence r, in the case of a nonzero Hr,
is defined as s = Hr. Furthermore, the set composed of all
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Fig. 1. Geometric interpretation of optimal information embedding.

the sequences r, corresponding to the identical s, is referred
to as the coset of the code C, defined as

Cs = {r|Hr = s} = {c + e|c ∈ C}
where e denotes the coset leader in the standard array. s can
be derived through H from an arbitrary sequence r, and e can
be expressed, in terms of a ML decoding function, as

e = f(Hr) = f(s)

where f(·) represents the linear codes decoding function.
Determined through ML decoding, the coset leader e is added
to r as a means to recover the code C, that is closest to the
sequence r. There exists a host vector corresponding to an
arbitrary sequence u of length n bits within the coset Cu of
the standard array. The syndrome su = HuT corresponding
to Cu is referred to as the host vector syndrome. Referred to
as the logo vector, a known binary sequence sl of length n−k
bits is intended for embedding. It is known with ease that the
coset leader eopt must be located within a set Cx ahead before
a sequence, closest to u, with syndrome sl, is discovered. Then
the syndrome sx is determined by the addition of logo vector
sl to su. From the view point of decoding, the coset leader eopt

can be discovered through maximal likelihood (ML) decoding,
expressed as

eopt = fopt(su + sl) = fopt(sx)

Suppose that a sequence x ∈ Cx exists, and Cx represents a
coset of the code C. It is intended to seek x with the minimal
weight, that is, x = eopt, which is expressed as

eopt = arg min
x∈cx

wH(x)

Once discovered, the coset leader eopt is added to the host
vector u as l′ = u + eopt. Essentially, l′ is the sequence,
closest to the sequence u within Fn

2 dimensional space, and
contains the logo vector sl . Illustrated below is a way to
embed a binary linear code through ML decoding by means
of a standard array.
Although once eopt is known, the optimal embedding vector

l′ can be thus discovered. It remains a difficult subject to find
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eopt in the case of a long (n, k) linear code C or a large value
of k, due to the fact that the complexity of the ML decoding
increases as 2k. A suboptimal embedding algorithm is then
proposed here in the next section to replace the ML algorithm
toward resolving the above mentioned disadvantage.

III. SUB-OPTIMAL EMBEDDING ALGORITHM
As a matter of fact, the binary data embedding had been

implemented using the suboptimal embedding algorithm in a
number of research activities. Proposed in 2002 by Oscar, three
types of binary data embedding are DHST, DHPT and DHSPT,
in the last two of which data embedding bits are altered in
pairs as a way to improve the MPSNR of image quality.
These three algorithms can be combined with other binary
embedding algorithms. Proposed also by Oscar, tree based
parity check (TBPC) algorithm [5], [6], a type of suboptimal
embedding algorithm, employs a parity check matrix. [5], [6]
embedding algorithm can also been characterized with the sub-
optimal embedding algorithm presented here. An illustration,
not requiring a parity check matrix, is presented as follows.
Proposed by [7], the binary embedding algorithm is of an
embedding capacity dependant on the partitioned host vector
of size m×n, into which log2(mn+1) number of 1’s can be
embedded, and a maximum of 2 bits can be altered. However,
those binary embedding algorithm is just a special case of
linear embedding codes, for the reason that an arbitrary parity
check matrix is capable of the binary data embedding. Yet,
the parity check matrix is designed and the coset leader vector
is sought in a measure that affects the embedding distortion.
However, those binary embedding algorithm is just a special
case of linear embedding codes, for the reason that an arbitrary
parity check matrix is capable of the binary data embedding.
Yet, the parity check matrix is designed and the coset leader
vector is sought in a measure that affects the embedding
distortion.
An efficient algorithm is presented here as a means to

perform the binary data embedding. Here, the coset leader is
found in an alternative way to the conventional ML decoding
algorithm. As follows, a simple way is utilized to locate
a low weighted toggle vector during the search of coset
leaders vector eopt. It is intended to locate a vector esub,
and w(esub) ≥ w(eopt) , in lieu of the optimal coset leader
w(eopt). It is requested that esub stay as close to w(eopt) as
possible. It is for sure that esub is a vector defined in Cx.
Obtained by the addition of esub to the host vector u, the
target vector l′ cannot be assured as the optimal vector. As
illustrated in Fig. 2, this is the one referred to as the suboptimal
embedding algorithm.
Here, a suboptimal algorithm, i.e. weight approximation em-

bedding (WAE) algorithm, is stated. Unlike the ML embedding
algorithm, a minimum weighted toggle vector is searched in
an iterative technique. More specifically, in ML algorithm,
the minimum weight is gained by an entire search of the
codewords within the linear embedding code, while instead
WAE algorithm seeks the less weighted toggle vector by times
of iterations. Performing k times of hardware operations each
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Fig. 2. Geometric interpretation of sub-optimal information embedding.

time, WAE proceeds in an iterative way until the convergence
is reached. It provides a lower operation complexity than the
ML algorithm does at the cost of distortion efficiency.
Recalling from section II that in the ML algorithm, f(sx)

is decoded to gain the codeword c, and the coset leader vector
e is obtained by addition of c to x, i.e. x + c. Here, f(sx)
is not directly decoded through the ML decoding, but instead
it is intended that the syndrome sx of the toggle x remains
invariant. As a simplest way to achieve this, the codeword c,
out of the linear code C, is added to the toggle x as x′, i.e.
x′ = x+ c. As a result, the weight of x′ is altered through the
codeword c, but x′ still falls within the coset Cx. Although
there is a total of number of 2k codewords c’s in the linear code
C, it is unrealistic to test them all. It is just that only k number
of codewords are selected from among 2k codewords for test,
which form the row vectors gi of a systematic generator matrix
Gs as follows.

Gs =

⎡
⎢⎢⎢⎣

g1

g2

...
gk

⎤
⎥⎥⎥⎦

These row vectors set is defined as Γ = {g1, g2, · · · , gk}. It is
known that for an arbitrary gi ∈ Γ and the toggle syndrome
sx is expressed as

sx = H(h + l)
= Hx

= Hx + Hgi

= H(gi + x)
= Hx′

where x, h and l is toggle vector, host vector and logo vector,
respectively. Although the syndrome sx remains invariant
with gi added to x, the toggle vector x together with the
corresponding weight does change. The distortion will be
reduced in the event that a less weighted modified toggle
vector x′ than the original toggle vector x can be found.
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Eventually, the distortion can be improved by means of a small
amount of weight variation.
Definitely, the dimension of a candidate Γ can be extended,

and k number of row vectors can be selected out of Gs, or
Γ = {gi|i = 1 · · ·Ck

i , i ≤ 2} can be formed as a combination
of two arbitrary vectors within Gs. Yet, the price paid for an
increment in i is a higher operation complexity. The case for
i = 1 is addressed in this work.
Now modified toggle vector x′ = x + gi is gained through

an appropriate weight variation of toggle x with the main goal
of approaching the weight of x′ to that of the coset leader e.
Assuming wH(x) = λ and λ is a constant, the vector x′ ,
approaching to e, can be expressed as

x′ = arg min
gi∈Γ

wH(gi + x)

where the vector x′ represents the vector with the minimum
weight after k times of tests. Besides, in case

w(e) ≤ wH(x′) ≤ λ

then the vector x′ stays closer to e than the vector x does. The
above mentioned algorithm, designated as WAE, is capable of
reducing the toggle weight as much as possible in an iterative
way.

IV. SIMULATION RESULTS
As follows, the algorithms stated above are simulated on

the embedding efficiency. In experiment, the host image U
and logo vector sl is selected randomly. The host image U is
divided into the n × N non-overlapping blocks, where each
block u is n × 1 in size, and each block u embed the logo
vector Sl of m bits. According to the experiment conducted
above, the WAE algorithm, compared with the ML algorithm,
requires a lower operation complexity, with the price of a
degraded efficiency η = m/D. As follows, the efficiency
η, corresponding to various systematic linear block codes, is
compared between both the WAE and ML algorithms. Applied
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Fig. 3. Embedding effciency of various algorithms.
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Fig. 4. Embedding effciency of various algorithms.

to a hamming linear code, WAE exhibits an identical efficiency
to that by performing the ML algorithm, for the reason that
WAE requires merely one time of iteration to successfully
locate the toggle coset leader.

V. CONCLUSIONS
Proposed in this work is a suboptimal WAE embedding

algorithm, with low operation complexity, made applicable
to an arbitrary (n,m) embedding code with a parity check
matrix. In most cases, an ML algorithm is criticized for being
extremely sensitive to the dimension (n − m), due to the
fact that the operation complexity varies exponentially with
(n − m). Rather the complexity exhibits a linear dependence
on (n − m) when performing WAE, making it applicable to
a long linear code embedding. Given a (n,m, λmin) linear
embedding code, the complexity required by WAE is merely
O(μ(n − m)) when locating the coset leader e, whilst it is
O(2(n−m)) by the ML algorithm, an unacceptable figure for a
large value of (n − m). The much lower complexity in WAE
is reached merely at the cost of a small deal of embedding
efficiency.
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