
A CONTENT-ADAPTIVE ±1-BASED STEGANOGRAPHY BY MINIMIZING THE
DISTORTION OF FIRST ORDER STATISTICS

Xinlu Gui, Xiaolong Li and Bin Yang

Institute of Computer Science and Technology, Peking University, Beijing 100871, China

ABSTRACT

Least significant bit (LSB) matching is a well-known steganographic
method with advantages of high payload, good visual/statistical im-
perceptibility and extreme ease of implementation. However, by uti-
lizing the distortion of one-dimensional histogram or the generated
additive embedding noise, some steganalyzers can perceive the exis-
tence of covert communication to some extent. Due to this, we ex-
tend the LSB matching steganography by minimizing the distortion
of first order statistics (i.e., one-dimensional histogram) and adap-
tively embedding data into noise regions. With these extensions, our
method significantly improves the stego-security. The experimental
results also prove its superiority over some state-of-the-art stegano-
graphic methods against various steganalyzers.

Index Terms— Steganography, LSB matching, histogram anal-
ysis, adaptive embedding, stego-security

1. INTRODUCTION

Steganography is a technique of covert communication, whose goal
is to embed secret message into cover data (e.g., digital images) in
such a way that the stego data cannot be discerned except for the in-
tended recipients. As the contrary technique of steganography, ste-
ganalysis aims to detect the existence of secret message.

There are two widely used steganographic algorithms for digi-
tal images: least significant bit (LSB) replacement and LSB match-
ing. They both have advantages of high payload, good visual im-
perceptibility and extreme ease of implementation. The embedding
procedure of LSB replacement is simple: just modify the LSB of
pixels in the payload as the corresponding bit of secret message.
The asymmetry property of one-dimensional histogram of this em-
bedding method leaves a clue to attackers and some recent work
has shown that LSB replacement can be easily detected even when
the embedding rate (secret message bits embedded per pixel) is low
[1,2]. The LSB matching embedding is similar to LSB replacement:
if the secret message bit does not match the LSB of the correspond-
ing cover pixel value, the pixel value is randomly increased or de-
creased by 1. This symmetrical embedding procedure makes LSB
matching more secure in terms of resisting steganalysis.

Though it is a difficult task, remarkable progress has been made
on steganalysis of LSB matching. In [3], Harmsen and Pearlman
proposed a steganalysis method based on the center of the mass
of the histogram characteristic function (HCF-COM) to detect the
additive-noise-based steganography. Afterwards, Ker [4] proposed
an effective approach on the basis of HCF-COM and the calibration
(downsample) technique. Then in [5], Li et al. suggested calcu-
lating the calibration-based steganalyzers on the difference image,
which is defined as the difference of adjacent pixels in the original
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image. Besides, Zhang et al. [6] proposed a new method to detect
LSB matching based on the statistics of amplitude of local extreme
(ALE) of image’s histogram. The authors observed that ALE would
decrease after LSB matching embedding. Cancelli et al. [7] ex-
tended Zhang et al.’s work to the two-dimensional histogram. They
experimentally demonstrated that the novel steganalyzer was much
more reliable than the original one described in [6]. The ALE-based
steganalyzers [6, 7] were further investigated by Gao et al. in [8].
Moveover, besides the targeted steganalyzers designed specifically
for LSB matching, there also exist blind steganalyzers that are in-
tended to detect a wide range of steganographic algorithms [9–11].
For instance, the wavelet absolute moment (WAM) steganalyzer pro-
posed in [9] is reported to outperform Ker’s methods [4]. In sum-
mary, although LSB matching is more secure than LSB replacement,
it still can be perceived to some extent.

To resist the statistic-based steganalysis of LSB matching, an ef-
fective approach is to minimize the distortion of first order statistics
(i.e., one-dimensional histogram) [12]. As is mentioned in [12], for
a cover image Ic, one hope to get a stego image Is which satisfies

Is = argmin ‖hc − hs‖l2 (1)

where hc and hs are one-dimensional histograms of the cover and
stego image, respectively. By this approach, instead of randomly in-
creasing or decreasing the pixel value, the embedding procedure is
carried out under a pre-determined vector (which is dependent on
the cover image) whose components are the probabilities of increas-
ing/decreasing the pixel values. This method can effectively resist
histogram analysis compared to LSB matching. However, it fails to
resist noise-analysis-based steganalysis.

To remedy this drawback of the method in [12], we propose a
new embedding scheme which can minimize the distortion of first or-
der statistics, and adaptively select the embedding locations based on
image content in the meantime. The main idea of content-adaptive
steganography is that it is more secure to modify pixels in noise re-
gions than smooth regions by the same amount [13]. In this way,
the novel embedding method can effectively resist both histogram
analysis and noise analysis, thus more difficult to detect.

The rest of this paper is organized as follows. We describe our
algorithm in detail in Section 2. Then in Section 3, we analyze the
security of our method and show the experimental results. The final
conclusion is drawn in Section 4.

2. THE PROPOSED METHOD

Typically, data embedding is a procedure that introduces a certain
type of noise into the cover image. The noise will distort the statis-
tical distribution of cover image. According to Cachin’s theory [14],
one should minimize the distortion of statistical distribution as much
as possible to achieve higher level of security. Besides, as previously
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Fig. 1. Pixels classification. The pixels of I1c remain unchanged in
data embedding and they are used to compute the noisy levels of
pixels in Ic − I1c . The pixels of I3c will be modified due to data em-
bedding, and the modification direction (increasing or decreasing the
pixel value) will be specifically selected, to minimize the distortion
of first order statistics.

mentioned in Section 1, one should embed data into relatively noisy
locations to resist noise analysis. Considering these perspectives, we
propose a steganographic algorithm that can both minimize the dis-
tortion of first order statistics and keep the smooth regions of cover
image unchanged. As a result, this method can resist both histogram-
analysis-based and noise-analysis-based detection. The embedding
procedure of our method includes three steps: noisy level computa-
tion, pixels classification and histogram-adapted data embedding.

Above all, we compute the noisy level. Consider a gray-scale
cover image Ic. Assume the embedding rate is α < 1. We will em-
bed αN bits into N pixels, where N is the total number of image
pixels. To begin with, we choose a parameter β ∈ (0, 1 − α), and
select βN pixels in Ic according to a secret key. The chosen βN
pixels are denoted as a set I1c . Then, for each pixel x /∈ I1c , we com-
pute its noisy level using the pixels in I1c . More specifically, take
the smallest integer t such that the (2t + 1) × (2t + 1) neighbor-
hood of x contains at least 4 pixels of I1c (assume these pixels are
{y1, ..., ym} ⊂ I1c ), then the noisy level of x is defined as

NL(x) = max
1≤i≤m

yi − min
1≤i≤m

yi. (2)

The noisy level function will be used to select suitable embedding
pixels to carry hidden data.

With noisy level computed, we move to the step of image pixels
classification. We first select the most noisy αN pixels from the set
Ic − I1c according to the noisy levels computed in (2). The selected
pixels are denoted as a set I2c . Then for each pixel x ∈ I2c , assume
the corresponding data bit to be embedded is w. We can get the stego
pixel:

xw =

{
x if x mod 2 = w,
x+ 1 or x− 1 if x mod 2 �= w.

(3)

Particularly, when xmod 2 �= w, the choice between x+1 or x− 1
is not random in our method. We will introduce how to determine it
in the next step. Denote the pixels which need to be changed in data
embedding as a set I3c , i.e., x ∈ I3c ⇔ x mod 2 �= w. To sum up,
we show the classification of image pixels in Fig. 1.

Now, we present the histogram-adapted data embedding proce-
dure. Notice that, only the M pixels in I3c need modification, while
the other N −M pixels will keep unchanged. Assume here the his-
tograms of Ic, Ic − I3c and I3c are hc, h1

c and h2
c , respectively:

hc(k) = # {(i, j) ∈ Ic : Ic(i, j) = k} (4)

h1
c(k) = # {(i, j) ∈ Ic − I3c : Ic(i, j) = k} (5)

h2
c(k) = # {(i, j) ∈ I3c : Ic(i, j) = k} (6)

where 0 ≤ k ≤ 255. It is obvious that hc(k) = h1
c(k) + h2

c(k),
and only the histogram h2

c will change after data embedding. In-
stead of randomly modifying the pixel value by 1 in the conventional
LSB matching, we carry out the embedding procedure under a pre-
determined vector (which is dependent on the cover image) whose
components are the probabilities of increasing the pixel values. The
pre-determined vector is achieved by solving an optimization prob-
lem of minimizing the distance between hc and hs. We assume that
for each pixel value k, it changes to k+ 1 with the probability of ak

or k − 1 with the probability of 1 − ak. It is clear that a0 = 1 and
a255 = 0.

We now discuss how to determine the vector a = (a1, ..., a254)
t.

Consider the histograms of stego image: hs, h1
s and h2

s, whose
definitions are exactly the same as the histograms of cover image
defined in (4)-(6). For each k, we have hs(k) = h1

s(k) + h2
s(k),

h1
s(k) = h1

c(k), and

h2
s(k) = ak−1h

2
c(k − 1) + (1− ak+1)h

2
c(k + 1). (7)

Then,

‖hc − hs‖2l2 = ‖h2
c − h2

s‖2l2 =
∑

|h2
c(k)− h2

s(k)|2

=
∑

|h2
c(k)− ak−1h

2
c(k − 1)− (1− ak+1)h

2
c(k + 1)|2. (8)

The problem of minimizing ‖hc − hs‖2l2 can be reformulated as
a quadratic programming problem and the solution is independent
of embedding rate α. More concretely, the quadratic programming
problem is: ⎧⎨

⎩
minimize

1

2
atQa+ cta

subject 0 ≤ ak ≤ 1
(9)

where a = (a1, ..., a254)
t is the vector to be determined, Q =

(qi,j)254×254 is a positive-definite matrix with qi,j = 0 if |i− j| �=
0, 2, and

qi,i = 4(h2
c(i))

2
(10)

qi−1,i+1 = qi+1,i−1 = −2h2
c(i− 1)h2

c(i+ 1) (11)

c = (c1, ..., c254)
t is a vector with, if i �= 2, 254,

ci = 2h2
c(i)(h

2
c(i+ 2)− h2

c(i+ 1)− h2
c(i) + h2

c(i− 1)) (12)

and

c2 = 2h2
c(2)(h

2
c(4)− h2

c(3)− h2
c(2) + h2

c(1)− h2
c(0)) (13)

c254 = 2h2
c(254)(−h2

c(255)− h2
c(254) + h2

c(253)). (14)

This quadratic programming problem can be solved efficiently by
the ellipsoid method [15].

Finally, we summarize our data embedding procedure:

• Select βN pixels (denoted as I1c ) from the cover image Ic us-
ing a secret key shared by the encoder and decoder. Calculate
the noisy level for each pixel in Ic − I1c according to (2).

• Choose the most noisy αN pixels from Ic − I1c as the data
embedding locations (denoted as I2c ). Compare the pixel val-
ues of I2c with the secret message and define the pixels to be
changed as a set I3c .

• Calculate the histogram of I3c . Solve the quadratic program-
ming problem in (9) to determine the vector a.
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• For each pixel in I3c , increase the pixel value k by 1 with
possibility ak or decrease it by 1 with possibility 1− ak.

In particular, it should be mentioned that, through the whole data
embedding process, pixels in I1c remain unchanged, and the noisy
level computation step is fully based on the set I1c , which is the key
point of our method.

The data extraction procedure of our method is as follows. The
decoder first locates the set I1c according to the secret key. Then it
computes the noisy levels of pixels in Ic − I1c just as the encoder.
Finally, the decoder selects the most noisy pixels as embedding lo-
cations (i.e., to determine the set I2c ) and rebuilds the secret message
by linking up the LSBs of the chosen pixel values.

3. EXPERIMENTAL RESULTS

The security of steganography is commonly measured by its perfor-
mance against steganalysis. Existing steganalysis methods can be
classified into two categories: targeted and blind. Targeted stegana-
lyzers normally pick out some special statistical magnitudes for con-
sideration which are related to the data embedding procedure, while
blind steganalyzers generally extract some exquisite features to mea-
sure the noise introduced by data embedding. It has been proved that
LSB matching can be perceived, to some extent, by both targeted and
blind steganalyzers.

Our work improves LSB matching by minimizing the distortion
of first order statistics and adaptively selecting embedding locations,
which helps LSB matching achieve higher security level. Targeted
steganalyzers on LSB matching, such as calibrated HCF-COM [4]
and ALE [6], utilize various characters to measure the distortion
of cover’s histogram after LSB matching embedding. As we min-
imize this distortion, the characters picked out for classifying are not
sensitive, which makes the steganalyzers less reliable. In addition,
our method implements content-adaptive embedding by calculating
noisy levels, which can effectively resist noise analysis. Since we
embed message into noisy regions, the noise introduced to the im-
age is much more unperceived. Thus the blind steganalyzers relying
on noise measurement will lose efficacy to some extent.

Our experiments are conducted as below.

• Image set: We download 3000 images from the USDA
NRCS Photo Gallery1. After the download, these images
are changed into gray-scale format. Then, in each image,
a square area with maximum size is cropped. Finally, each
cropped image is downsampled to 512× 512 pixels.

• Compared embedding methods: To evaluate the proposed
method, the conventional LSB matching, the optimized em-
bedding method [12] which minimizes the distortion of first
order statistics and the recently proposed content-adaptive
embedding method [13] are adopted.

• Steganalyzers: Our experiments introduce three detection
methods: the targeted steganalyzer calibrated HCF-COM
computed on the difference image [5], the classical blind
steganalyzer WAM [9] and the blind steganalyzer proposed
in [16].

• Parameters: Two parameters are taken into consideration.
One is the embedding rate α, which is chosen as 0.5 and 0.3
in our experiments. In each experiment, the three compared
methods and our method are conducted under the same em-
bedding rate. The other is the parameter β. We try several
values and will discuss its influence on the result later.

1http://photogallery.nrcs.usda.gov
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Fig. 2. ROC curves of different parameter β. Here, the embedding
rate is 0.5.

Above all, we try several values of β at an embedding rate of 0.5
to make a decision on this parameter. The receiver operating charac-
teristic (ROC) curves for steganalyzer [16] is shown in Fig. 2. The
area under ROC curve (AUC) measures the general probability of
correct classification between cover and stego image. Notice that a
high AUC value indicates excellent discrimination and low embed-
ding security. The figure demonstrates that the value of β plays an
important role here. It can be observed that the result of β = 0.35
is much inferior to that of β = 0.15. We try the same values for
two more steganalyzers and another embedding rate, and get similar
results that β = 0.15 outperforms other values. Based on above ex-
periments, we can conclude that β = 0.15 is a better choice, so the
following experiments are conducted with β = 0.15.

Further experimental results are shown in Fig. 3, which reveals
that our scheme (black solid line) is superior to the others. Specifi-
cally, for targeted steganalyzer in Fig. 3(a)(d), the ROC curve of the
method minimizing the first order distortion in [12] is slightly below
that of LSB matching, while curves of the content-adaptive method
in [13] and our method are close to straight lines, which implies that
the steganalyzer can hardly perceive the covert message. When it
comes to blind steganalyzer in Fig. 3(b)(c)(e)(f), our method dis-
tinctly excels the LSB matching and method in [12], and besides, is
visibly better than the method in [13]. We furthermore explore the
reasons. Commonly blind steganalyzers detect the covert message
by measuring variation of noise after embedding. Our improvement
remarkably limit the variation by content-adaptive embedding in the
noisy regions; in contrast, the method in [12] does not change the
noise introduced. Our method also minimizes the distortion of first
order statistics compared with the method in [13]. In conclusion,
the experimental results prove that our method can effectively resist
both targeted and blind steganalyzers.

4. CONCLUSION

In this paper, we proposed an improved ±1-based embedding
method by both minimizing the distortion of first order statistics and
adaptively embedding into noisy regions. According to Cachin’s
theory [14], the less distortion of the statistical distributions between
image and stego image, the higher level of security can be achieved.
At the same time, we guaranteed that the message is embedded into
noisy regions, making noise-analysis-based steganalysis invalid.
Experiments showed that our method significantly improved the
level of security. The proposed method is more secure than the
conventional LSB matching or some state-of-the-art steganographic
methods against both the targeted and blind steganalyzers. The fu-
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(a) α = 0.5; steganalyzer: the targeted one in [5]
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(b) α = 0.5; steganalyzer: the blind one in [9]

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Probability of False Positive

P
ro

b
a

b
ili

ty
 o

f 
D

e
te

c
ti
o

n

 

 

LSB matching

[12]

[13]

Our method(β=0.15)

(c) α = 0.5; steganalyzer: the blind one in [16]
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(d) α = 0.3; steganalyzer: the targeted one in [5]
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(e) α = 0.3; steganalyzer: the blind one in [9]
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Fig. 3. Comparison of ROC curves of different embedding methods for different steganalyzers.

ture work will focus on how to efficiently minimize the distortion of
higher order statistics.
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