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ABSTRACT

The paper proposes a new approach for evaluating the secu-

rity levels of digital watermarking schemes, which is more in

line with the formulation proposed in cryptography. We first

exhibit the class of equivalent decoding keys. These are the

keys allowing a reliable decoding of contents watermarked

with the secret key. Then, we evaluate the probability that the

adversary picks an equivalent key. The smaller this probabil-

ity, the higher the key length. This concept is illustrated on

two main families of watermarking schemes: DC-QIM (Dis-

tortion Compensation Quantization Index Modulation) and

SS (Spread Spectrum). The trade-off robustness-security is

again verified and gives some counter-intuitive results: For

instance, the security of SS is a decreasing function of the

length of the secret vector at a fixed Document to Watermark

power ratio. Additionally, under the Known Message Attack,

the practical key length of the watermarking scheme rapidly

decreases to 0 bits per symbol.

Index Terms— Watermarking , Security , Key Length ,

Quantization , Spread-spectrum

1. INTRODUCTION

The concept of security in watermarking has not a so long

history compared to cryptography. The early works base wa-

termarking security assessment on the information about the

secret key that leaks from the observations [1, 2]. This is

the translation of the definition of security for cryptosystems

by C.E. Shannon. However, this conception rarely applies in

modern cryptography which almost always relies on compu-

tational security1.

Another difference comes from the fact that the secret

keys may not be unique in watermarking. In cryptography,

the exact knowledge of the secret key is needed to decrypt

cipher texts or to encrypt messages. In watermarking, the se-

cret key is usually a real vector: it is for example the dither of

This work was partly founded by the French National Research Agency

program referenced ANR-10-CORD-019 under the Estampille project.
1It is also true that we witness a recent trend to a return to information

theoretical security in cryptography.

DC-QIM (Distortion Compensated Quantization Index Mod-

ulation) or the carrier of SS (Spread Spectrum) schemes. The

embedder and the decoder generates this secret vector using

the same seed of a pseudo-random generator but the adversary

needs not to find back this seed. Indeed it is usually easier to

find an estimation of the secret vector good enough to grant

the decoding of watermarked contents or the embedding of

hidden messages in content. Therefore, we consider that the

secret key, denoted by k (or k for vectors) in the sequel, is the

secret vector, not the seed. This idea has been first sketched

in [3] and this paper investigates it thoroughly.

In cryptography the security of a primitive strongly re-

lies on the size of the secret key. If the implementation of

the scheme is not flawed by some security pitfalls, the ad-

versary has no other option than performing an exhaustive

search. This attack scans all the possible keys in order to

find the one used for encryption. The size N of the crypto-

graphic key in bits is consequently directly linked with the

number of trials necessary to perform this exhaustive search

attack (a.k.a. brute-force attack). If the key is a uniformly

drawn binary word of length N , the probability to pick the

right key is p = 2−N , the size of the key ensemble is p−1 = 2N

or in logarithmic scale − log2(p) = N bits.

In this paper, we would like to measure watermarking se-

curity in the same manner. To do so, we will ask the following

question: What is the probability p that the adversary picks up

a convenient key? Then, the security level of the scheme will

be called the key length measured by − log2(p) in bits.

2. INFORMATION THEORETIC SECURITY

Let us denote K the random variable associated to the secret

key, K the space of the secret keys. Before producing any

watermarked content, the designer draws the secret key k
according to a given distribution pK(K = k). The adversary

knows K and pK(K = k) but he doesn’t know the instan-

tiation k. This lack of knowledge can be measured in bits

by the entropy of the key H(K) ≜ −⨋K pK(k) log2 pK(k)
(i.e., an integral if K is a continuous r.v. or a sum if K
is a discrete r.v.). Now, suppose the adversary sees No

observations ONo = (O1, . . . ,ONo). The nature of these

observations defines the attack. In this paper, we restrict
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our attention to the Known Message Attack (KMA - an

observation is a pair of a watermarked content and the em-

bedded message). Thanks to these observations, the ad-

versary can refine his knowledge about the key by con-

structing a posteriori distribution pK(k∣ONo). The infor-

mation leakage is given in bits by the mutual information

I(K;ONo), and the equivocation he(No) ≜ H(K ∣ONo)
measures how this leakage decreases the initial lack of infor-

mation: he(No) = H(K) − I(K;ONo). The equivocation

is a non increasing function. For most of the watermarking

schemes, the information leakage is not null, and as the ad-

versary keeps on observing, the equivocation decreases down

to 0 (discrete r.v.) or −∞ (continuous r.v.). This means that

the adversary as collected enough observations so that he can

uniquely identify the secret key k.

The subsections below show a geometrical interpretation

of the concept for two watermarking schemes. Thanks to

the observations (e.g. watermarked vectors y1, . . . ,yNo in

Fig. 2), the adversary succeeds to restrict the set of possible

keys to a smaller set K(ONo) ⊂ K depicted in Fig. 1.

2.1. DC-QIM

Let us model the host signal by a vector x ∈ R
Nv . Consider

a lattice Λ ⊂ R
Nv . For each message m ∈ {1,2, . . . ,M}, a

coset leader dm is defined such that ∪M
m=1Λ + dm is a finer

lattice. Hiding message m in x yields watermarked vector y:

y = e(x,m,k) = x+α(QΛ(x−dm −k)−x+dm +k), (1)

with QΛ(.) the Euclidean quantizer on Λ. The key k is a Nv

dimension vector applying a secret shift of the quantizer. Due

to the Λ-periodicity, the key ensemble K is the Voronoi cellV(Λ) ≜ {v ∈ RNv ∣QΛ(v) = 0}.

Paper [4] shows that the security is maximized if k
has been uniformly drawn over K = V(Λ), and that, un-

der the KMA attack, the adversary succeeds to narrow

the key ensemble down to K(ONo) = ∩No

i=1Di with Di ≜
ỹi − dmi − (1 − α)V(Λ) and ỹ ≜ y − QΛ(y). The equivo-

cation is then the expectation of the log-volume of this set:

he(No) = E[log(vol(KNo))]. K(ONo) is in general hard to

compute and [4] gives fast approximations.

2.2. Spread Spectrum

Consider a spread spectrum one-bit watermarking s.t. y =
e(x,m,k) = x+(−1)mk, with m ∈ {−1,1}. The host is mod-

eled by a white Gaussian vector of power σ2
X and Nv samples.

The secret key is usually drawn also as K ∼ N(0, σ2
KINv).

This time, K = R
Nv is not bounded. Yet, thanks to the

AEP, for Nv sufficiently large, the key indeed lies in a

bounded volume so-called the typical set with high proba-

bility: P[k ∈ Kε] > 1 − ε with vol(Kε) ≤ 2H(K)+nε. In this

very simple case, Kε = {v ∈ R
Nv ∶ ∣ ∥v∥2

Nvσ2
K

− 1∣ < 2ε} and

H(K) = Nv/2. log2(2πeσ2
K). Under the KMA, he(No) =

Nv/2. log2(2πe σ2
Xσ2

K

σ2
X
+Noσ2

K

), and the estimation K̂ is given

in [5, Eq.(3) (4)]. Again, thanks to the AEP, he(No) can be

seen as the log volume of the typical set of the estimation K̂.

3. PROBABILISTIC WATERMARKING SECURITY

Our new definition of the security is not centered on the infor-

mation leakage or estimation of a key. It is based on the fact

that the secret key may not be unique in digital watermarking

because there exist equivalent keys.

From key k, a watermarking scheme derives an encoder

y = e(x,m, k) and a decoder m̂ = d(y, k) which can be

thought as regions in the embedding domain. The decoding

region is defined as Dm(k) ≜ {y ∈ R
Nv ∶ d(y, k) = m}. To

hide message m, the encoder pushes the host vector x deep

inside Dm(k), and this creates an embedding region Em(k).

To provide robustness, Em(k) ⊂ Dm(k) s.t. if the vector ex-

tracted from an attacked content z = y+n goes out of Em(k),

z might be still in Dm(k) and the correct message is decoded.

We introduce the set of equivalent decoding keys K(d)eq (k, ε)
as the set of keys that allow a decoding of the hidden mes-

sages embedded with k with probability 1 − ε:

K(d)eq (k, ε) = {k′ ∈ K ∶ P[d(e(x,m, k), k′) ≠ m] ≤ ε} (2)

In the same way, K(e)eq (k, ε) is the set of keys that allow to

embed messages which will be reliably decoded using key k.

In Fig. 2, k′ ∈ K(d)eq (k,0) because Em(k) ⊂ Dm(k′), whereas

k′ ∉ K(e)eq (k,0) because Em(k′) ⊄ Dm(k). This paper only
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focuses on the equivalent decoding keys. The goal of the ad-

versary is now to draw a key according to the set of observa-

tions Keq(ONo) which also belongs to Keq (see Fig.1).

The issue is then the probability P (d)(ε) (or P (e)(ε))

that an adversary picks up an equivalent key. For instance,

if the keys are uniformly distributed over a bounded set,

P (d)(ε) = E[vol(K(d)eq (k, ε))]/vol(K) (see Fig. 1). Like in

Sect. 2, we also would like to investigate how the observations

ONo increases this probability. Again, if the estimator of k
is uniformly distributed over K(ONo), then P (d)(ε,No) =
E[vol(K(d)eq (k, ε) ∩ K(ONo))/vol(K(ONo)))]. Finally, the

security level is then expressed in bits as the key length:

L(ε,No) ≜ − log2(P (d)(ε,No)) bits, (3)

to obtain an analogy with cryptography.

The next sections of this paper compute the key length of

two classical watermarking schemes: DC-QIM with a cubic

lattice (a.k.a. SCS) and Spread Spectrum.

4. INVESTIGATIONS ON DC-QIM

From now on, we suppose that Λ is a cubic lattice. We can

then proceed component-wise and we introduce π(d)(ε,No)
and �(ε,No) the probability and key length per symbol, a

symbol in {1,2, . . . ,M} being embedded per component. For

a given component, the secret key is a scalar k, and regionsEm(k) and Dm(k) are two intervals of respective lengths(1−α)Δ and Δ/M both centered on k+mΔ/M . We assume

that the message is embedded without error (α > (M −1)/M )

and that the adversary wants to decode without error (ε = 0).

The secret key is uniformly drawn over the interval K =[−Δ/2,Δ/2] s.t. the information theoretical approach eval-

uates the security to H(K) = log2Δ bits. Depending on

the value of Δ, this quantity can be negative whose inter-

pretability is difficult. On the contrary, the computation of

the key length is straightforward. As illustrated in Fig. 3,

we have K(d)eq (k,0) = [k′min, k
′
max] and vol(K(d)eq (k,0)) =

Δ(α − 1 + 1/M). This yields the key length per symbol:

�(0,0) = − log2(α + 1/M − 1) bits. (4)

Note that the probabilistic approach yields a key length in-

dependent of Δ contrary to the information theoretical ap-

proach, and �(0,0) → ∞ for α → (M − 1)/M . This means

that only k′ = k allows a decoding without errors becauseEm(k) = Dm(k), ∀m. On the other hand, if α = 1 (no distor-

tion compensation), π(d)(ε,No) = M−1. All samples with m
embedded inside are decoded as m′ and there is one chance

out of M that m′ = m.

For No = 1 in the KMA setup, the information theoretical

approach evaluates the security to he(1) = log2((1 − α)Δ)
bits [5, Eq.(16)]. K(ONo) is defined by the feasible regionD1 (see Sub. 2.1), which is in this case the interval of length(1 − α)Δ centered on y1 +mΔ/M . Depending of the value

Dm(k) k + dm + �Δ

Δ/MEm(k) (1 − α)Δ
Dm(k′min) k′min + dm + �Δ

Δ/MDm(k′max) k′max + dm + �Δ

Δ/MK(d)eq (k,0)
Δ(1/M − 1 + α)

Fig. 3. Computation of vol(K(d)eq (k,0)) for DC-QIM.

of y1, we can compute the probability that a key belonging

to the feasible set is included in the equivalent set, and its

expectation enables to compute π(d)(0,1). Finally the key

length is:

�(0,1) = ⎧⎪⎪⎨⎪⎪⎩
− log2

(α+(1−M)/M)(5−5α−1/M)
4(1−α)2

bits if α ≤ α′

0bit if α > α′,

where α′ is the root of equation (α + (1 −M)/M)(5 − 5α −
1/M) = 4(1 − α)2, α′ ∈ [0,1]. The feasible set is always

included in the equivalent region for α > α′.
For No > 1, we must use Monte-Carlo simulations. For

a given run, we draw a key k, we generate No observations

and compute K(ONo), which is also an interval in this case,

and its intersection with K(d)eq (k,0). This gives us the proba-

bility π(d)(0,No) (see Sect. 3). We finally take the log of the

average of π(d)(0,No) over Nr runs.
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Fig. 4. key length per symbol for DC-QIM and M = 2 vs. the

distortion compensation parameter α.

Fig. 4 gives the key length per symbol. Parameter α is

usually increased to gain some robustness, whereas the key

length is a decreasing function. This illustrates the trade-off

robustness-security. The probability to disclose the secret key

over Ns symbol is π(d)(ε,No)Ns . Therefore, the total key

length is L(ε,No) = Ns�(ε,No). Note that the key length

in bits might be bigger than the vector dimension Ns be-

cause �(ε,No) can be bigger than 1 bit. This is due to the

fact than the key is not a binary word but a vector in R
Nv .

Also, L(ε,No) should be clipped to the length of the binary
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seed of the PRNG. We conjecture that, in KMA, for a given

α ∈ ((M − 1)/M,1], there exists a N⋆o s.t. No ≥ N⋆o sets

in expectation �(0,No) = 0, i.e. the scheme is totally broken

whatever the length Ns.

5. INVESTIGATIONS ON SPREAD SPECTRUM

We consider the simple case of a one-bit embedding with

x ∼ N(0, σ2
XI) and y = x + (−1)mk, where m ∈ {0,1}. The

decoder is correlation based: d(y,k) = 0 if y⊺k > 0, 1 else.

When a noise is added giving z = y+n with n ∼ N(0, σ2
NI),

the Bit Error Rate equals Φ (−∥k∥/√σ2
N + σ2

X) (Φ(.) the cu-

mulative distribution function of a normal r.v.). Even without

noise, the BER is not null and we define η ≜ Φ(−∥k∥/σX).

Now, the adversary draws a key k′ and decoding a

content watermarked with k yields d(y,k′) = 0 if x⊺k′ +(−1)mk⊺k′ > 0. Therefore, the BER is Φ (−k⊺k′/σX∥k′∥),

which is lower than ε if

k⊺k′

∥k′∥∥k∥ ≥ τ(ε,k) ≜ − σX∥k∥Φ−1(ε) =
Φ−1(ε)
Φ−1(η) . (5)

The LHS is the cosine of the angle between k and k′ which

is always lower than 1. Thus, there exist equivalent keys iff

ε > η. Keq(ε,k) is then a single hypercone of axis k and

angle arccos(Φ−1(ε)/Φ−1(η)).

For No = 0, the probability of drawing a key k′ ∼N(0, σ2
KINv) inside Keq(ε,k) is the ratio of the solid angle

of this hypercone and the full space. This equals β(ε,k) ≜(1−Iτ(ε,k)2(1/2, (Nv−1)/2))/2 where I(.) is the regularized

incomplete beta function. Finally, π(d)(ε,0) = E[β(ε,k)],
where the expectation is over pK(K = k).

For No > 0, we suppose without loss of generality that

the embedded messages were all set to 0. Then one estima-

tor k̂ is the average of the watermarked contents, e.g. k̂ =
N−1o ∑No

i=1 xi + k and p(k̂∣ONo) is N(k,N−1o σ2
XINv). The

probability of drawing an estimation inside Keq(ε,k) is up-

per bounded by the cumulative distribution function of a non-

central F-distribution variable of degrees of freedom ν1 = 1,

ν2 = Nv − 1 and non centrality parameter λ(k) = No
∥k∥2

σ2
X

,

weighted by the probability P[k′⊺k > 0]:
γ(ε,No,k) ≜ [1 − F ((Nv − 1)τ(ε,k)2

1 − τ(ε,k)2 ; ν1, ν2, λ(k))]
∗ Φ (√λ(k)) (6)

Finally, π(d)(ε,No) ≲ E[γ(ε,No,k)], where the expectation

is over pK(K = k).

Fig. 5 plots the key lengths for three different setups (No =
0, No = 1 and No = 10) and DWR = 10dB. The most impor-

tant fact is that the key length is a decreasing function w.r.t.

Nv , the length of k. This seems counter-intuitive and contra-

dicts a claim of [3] (a key length proportional to Nv). This is
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Fig. 5. key length per symbol for SS: DWR = 10dB,

ε = 10−2, ⋆ represents Monte-Carlo simulations using 103

random keys and observing 102 times No contents.

indeed normal since it stems from the trade-off robustness vs.
security: a bigger Nv improves the robustness but decreases

the key length. We also note the devastating effect of KMA:

for Nv = 200 the key length decreases from approximately 50

bits to 10 bits for No = 1 and 10−3 bits for No = 10. Some

key lengths were estimated by Monte-Carlo simulations when

possible (ie. not too big) and they confirm the theoretical val-

ues. Again, these are key lengths per symbol and shall be

multiplied by Ns for a multi-bit SS scheme.

6. CONCLUSION AND PERSPECTIVES

This novel definition of the security in watermarking enables

to compute the security of a scheme regarding an exhaus-

tive search strategy. It also enables to compute and analyse

a watermarking scheme the same way as one would quantify

the security of a cryptographic system. Yet this first analysis

shows that the key length, which can be very important when

the adversary doesn’t have access to any observations; can

also decrease dramaticaly whenever the adversary can uses

observations.
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