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ABSTRACT
In order to combat the spread of digital forgeries, researchers have
developed a variety of forensic techniques to verify the authenticity
of digital multimedia files. Though many of these techniques can
reliably detect traditional forgeries, recent research has shown that
they can easily be fooled by anti-forensic operations designed to
hide evidence of forgery. In response, new forensic techniques have
been developed to detect the use of anti-forensics. In light of this,
there is now a need to develop a theoretical understanding of the
interactions between a forger using anti-forensics and a forensic
investigator. In this paper, we propose techniques to evaluate the
performance of anti-forensic algorithms along with a game theoretic
framework for analyzing the interplay between forensics and anti-
forensics. Furthermore, we propose a new automatic video frame
deletion detection technique along with a technique to detect the
use of video anti-forensics. We evaluate these techniques using our
proposed analytical framework.

Index Terms— Anti-Forensics, Digital Forensics, Video Com-
pression, Game Theory

I. INTRODUCTION

The prevalence of digital devices has caused digital multimedia
content to become pervasive throughout modern society. However,
because digital content can be easily altered using widely available
software, its authenticity must be established before it can be
trusted. As a result, a number of digital forensic techniques have
been developed over the past decade to identify the origin of
a media file, trace its processing history, and identify digital
multimedia forgeries [1]. These techniques operate by identifying
traces, known as fingerprints, left in digital multimedia files by
manipulating operations or during the digital capture process.

Though digital forensic techniques are capable of detecting
standard manipulations, recent research has shown that they can be
fooled by a forger using anti-forensics to hide their forgery. Anti-
forensic techniques operate by disguising manipulation fingerprints
or falsifying device specific fingerprints inadvertently introduced
when a digital file is formed. In previous work, we proposed an
anti-forensic technique to remove compression fingerprints from
digital images and showed how this technique can be used disguise
several types of image forgery [2]. Additionally, we proposed an
anti-forensic technique to hide evidence of frame deletion in digital
videos [3]. Other anti-forensic operations have been designed to
falsify the photo-response non-uniformity (PRNU) fingerprint left
in digital images by sensor imperfections [4] and hide fingerprints
left by image resizing or rotation [5].

The use of anti-forensics by a digital forger is not without
its drawbacks, however. Many anti-forensic operations leave their
own forensically identifiable fingerprints in digital multimedia files
just like traditional signal processing operations. Researchers have
already developed techniques to detect PRNU forgery [6] and
identify the use of single JPEG compression anti-forensics [7].

This work is supported in part by AFOSR grant FA95500910179.
The authors can be reached by email at {mcstamm,kjrliu}@umd.edu.

In the past, the performance of digital forensic techniques has
been measured using traditional tools from decision theory. While
these tools can adequately evaluate forensic techniques, they often
are poorly suited to measure the performance of anti-forensic
operations. For example, should a missed forgery detection in
an anti-forensically modified file be counted the same as one in
which the file was not anti-forensically modified? If an anti-forensic
operation is able to successfully remove fingerprints left by a
particular forgery operation but introduces new fingerprints of its
own, how do we evaluate its effectiveness?

In this last scenario, a forger may choose to reduce the strength
of fingerprints left by their anti-forensic operation by decreasing the
strength at which they apply anti-forensics. They must be careful,
however, because this will cause a corresponding increase in the
strength of the manipulation fingerprints that remain after anti-
forensics has been used. The forensic investigator, meanwhile, must
ensure that the combination of the false alarm rates from their
techniques to detect editing and the use of anti-forensics is below
a constant false alarm rate. As a result, the forger and forensic
investigator must both balance a set of trade-offs that depend upon
the actions of the other party. When examining these trade-offs,
one may ask what are the optimal set of actions for both the forger
and forensic investigator to take?

In this paper, we address these problems by proposing a set of
techniques to evaluate the performance of anti-forensic operations.
Additionally, we propose a game theoretic framework to evaluate
the dynamics between a forger and a forensic investigator. This
framework can be used to determine the probability that a forgery
will be detected when both a forger and forensic investigator are
using optimal anti-forensic and forensic detection strategies. We
then demonstrate the usefulness of these techniques by evaluating a
set of video forensic and anti-forensic techniques with them. To do
this, we propose an automatic frame deletion detection technique.
This technique improves upon Wang and Farid’s method which
requires human inspection [8]. Additionally, we propose a new
forensic technique to detect the use of our anti-forensic frame
deletion method. Using our proposed framework, we are able to
determine under which conditions a video forgery will likely be
detected.

II. PERFORMANCE ANALYSIS OF ANTI-FORENSICS
Consider the forensic problem of determining if a digital mul-

timedia file ψ has been manipulated using an editing operation
m(·). Traditionally, this is posed as a hypothesis testing problem
where the null hypothesis is that ψ is unaltered and the alternate
hypothesis is that ψ is a manipulated version of another multimedia
file ψ′, i.e.

H0m : ψ �= m(ψ′),

H1m : ψ = m(ψ′).
(1)

We use the subscript m to differentiate this hypothesis test from
other hypothesis testing problems which we will discuss later.

A forensic investigator will decide between these hypotheses
using a decision rule δm . Typically, this decision rule operates
by obtaining some measure of the strength of the fingerprints left
in ψ by m, then comparing this measure to a decision threshold.
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This decision threshold is chosen to maximize the decision rule’s
probability of detection Pd(δm) = P (δm = H1|ψ = m(ψ′))
without exceeding a constraint on its probability of false alarm
Pd(δm) = P (δm = H1|ψ = m(ψ′)). We denote a decision rule
designed with the false alarm constraint Pfa as δ

(Pfa )
m .

To disguise their forgery, a digital forger can design an anti-
forensic operation αm to fool the detector δm . In the past, the
performance of αm has been measured by the probability that δm
will classify an anti-forensically manipulated file unmanipulated,
or explicitly P (δm(αm(ψ)) = H0|ψ = m(ψ)). This measure can
be misleading, however, because it unfairly attributes all missed
detections to the anti-forensic operation. In reality, unless δm
is able to perform with Pd = 100%, it will naturally miss
several manupulation detections even if anti-forensics is not used.
Because of this, this measure is biased towards overestimating the
performance of αm .

To more accurately measure the performance of an anti-forensic
operation, we propose using its probability of anti-forensic effec-
tiveness, which we define as

Pae(αm) = P (δm(αm(ψ)) = H0| δm(ψ) = H1, ψ = m(ψ)).
(2)

This measure avoids the previously discussed bias towards overes-
timating an anti-forensic operation’s performance.

If, however, forensic investigators are aware of the existence of
αm , it does not need to achieve a Pae = 100% in order to render
δm ineffective. Instead, it only needs to reduce the performance
of δm to the point that it provides investigators no advantage
over making a completely random decision. This is equivalent to
reducing δm ’s probability of detection to Pd(δ

(Pfa )
m ) = Pfa . If this

can be done, we claim that δm is susceptible to the anti-forensic
attack αm because decisions made by δm convey no information
about whether ψ has been manipulated or not.

To measure the degree to which a forensic technique δm oper-
ating with a false alarm constraint Pfa is susceptible to an anti-
forensic attack αm , we define its anti-forensic susceptibility as

Sα(δm ,Pfa) =

Pd(δ
(Pfa )
m )−max(Pd(δ

(Pfa )
m )(1− Pae(αm)),Pfa)

Pd(δ
(Pfa )
m )− Pfa

. (3)

The anti-forensic susceptibility is a measure between 0 and 1 of the
decrease in effectiveness of δm caused by αm . If Sα(δm ,Pfa) = 0,
this indicates that αm is not able to cause any decrease in the
performance of δm . Alternately, Sα(δm ,Pfa) = 1 signifies that the
performance of δm has been reduced to that of a random decision.

In order to provide an intuitive understanding of the anti-forensic
susceptibility, we note that the numerator of Sα is the decrease in
δm ’s probability of detection caused by the use of anti-forensics.
This corresponds to the distance A in Fig. 1. When calculating this
decrease, we take the maximum between probability that δm will
detect manipulation if anti-forensics is used, i.e. Pd(δ

(Pfa )
m )(1 −

Pae(αm)), and the Pfa because a forensic investigator can always
achieve Pd = Pfa by randomly deciding that a multimedia file is
manipulated with probability Pfa .

The denominator of Sα is chosen to be the maximum decrease
in δm ’s probability of detection that αm needs to cause in order to
render δm ineffective. This distance is denoted by B in Fig. 1. By
choosing the denominator in this manner, we are able to normalize
the measure Sα. We note that Sα is undefined at Pfa = 100%
because no decrease in the performance of δm is possible at this
false alarm level (δm will classify every file as manipulated).

III. TRADE-OFF BETWEEN FORENSICS AND
ANTI-FORENSICS

When an anti-forensic operation leaves behind its own unique
fingerprints, a new forensic detection technique δα can be designed

Fig. 1. Example relating the anti-forensic susceptibility to a forensic
technique’s ROC curves when anti-forensics is and is not used. The anti-
forensic susceptibility at a given false alarm rate is the ratio A/B.

to detect the use of anti-forensics. As before, this detection problem
can be framed as the following hypothesis testing problem

H0α : ψ �= αm(m(ψ′)),

H1α : ψ = αm(m(ψ′)).
(4)

Here δα is used to determine if the multimedia file in question ψ
is a manipulated and anti-forensically modified version of another
file ψ′.

If a forensic investigator is able to identify the use of anti-
forensics in a file, they will logically assume it is inauthentic. This
poses a difficult problem for a forger: if the use of anti-forensics
can be detected, should it be used to disguise a forgery? Logically,
a forger should use anti-forensics only if it decreases the probability
that their forgery will be detected. In many cases, a forger can adjust
the strength with which they apply anti-forensics. By applying
anti-forensics with decreased strength, the forger can decrease the
strength of the fingerprints left by anti-forensics. Care must be
taken when doing this because as the strength of an anti-forensic
operation is decreased, the strength of manipulation fingerprints
that remain in the multimedia file after anti-forensics is applied will
increase. In addition, the forger must take into account the cost of
any perceptual distortion caused by anti-forensics because if the
forgery does not appear perceptually realistic, it will be flagged
as inauthentic. As a result, the forger must determine the optimal
strength with which to apply anti-forensics.

A similar trade-off exists for a forensic investigator. Typically,
a forensic investigator must operate with a constraint on their
probability of false alarm. Since both the manipulation and anti-
forensics detection techniques will contribute to the total probability
of false alarm, the forensic investigator must choose a set of deci-
sion thresholds for δm and δα such that the total probability of false
alarm lies within their constraint. When doing this, they can choose
to allow one detection technique to operate with a higher Pfa than
the other as long as the total false alarm constraint is met. This
will increase the probability of detection achieved by the detection
technique operating at a higher Pfa while lowering the probability
of detection for the other. A rational forensic investigator will
seek out the combination of thresholds that maximizes the total
probability that they identify a forgery.

When examining these trade-offs, it is clear that the optimal
anti-forensic strength used by the forger depends on the decision
thresholds used by δm and δα. Similarly, the forensic investigator’s
optimal choice of decision thresholds for δm and δα depends
on the strength with which the forger applies anti-forensics. The
dependence of each party’s actions upon those of the other naturally
leads to the following question: does there exist a set of actions
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that neither party has an incentive to deviate from? If such a set of
actions exists, what are the probabilities of detection and false alarm
achieved by the forensic investigator? To answer these questions,
we propose the following game theoretic formulation for analyzing
the dynamics between a forger and a forensic investigator.

Let player 1 denote the forensic investigator and player 2 denote
the forger. We adopt the convention that the forensic investigator
chooses the decision thresholds for δm and δα first, then allows the
forger to choose their optimal anti-forensic strength in response.

Since choosing the set of decision thresholds for each forensic
technique is equivalent to choosing the probabilities of false alarm
at which they operate, a set of actions, also known as a strategy, for
the forensic investigator can be completely specified by choosing
the probability of false alarm η at which δm operates. For a
given constraint ξ on the total probability of false alarm PTot

fa ,
the corresponding false alarm probability η̃ at which δα operates
is given by finding η̃ such that PTot

fa = ξ. The total probability of
false alarm is explicitly defined as

PTot
fa = P

(
δ(η)m (ψ) = H1m

⋃
δ(η̃)α (ψ) = H1α

∣∣∣
ψ �= m(ψ′), ψ �= αm(m(ψ′))

)
. (5)

The set of possible strategies that the forensic investigator can
employ is η ∈ [0, ξ]. Let α(k)

m denote an anti-forensic operation
operating at strength k ∈ [0, 1] where k = 1 corresponds to using
anti-forensics at full strength. The set of strategies that the forger
can employ is the set of anti-forensic strengths k ∈ [0, 1].

Given a pair of strategies (η, k), we define the utility that player
1 wishes to maximize as

U1(η, k) = P
(
δ(η)m (ψ) = H1m

⋃

δ(η̃)α (α(k)
m (ψ)) = H1α

∣∣∣ψ = m(ψ′)
)
. (6)

This is the probability that a forgery will be detected, either by
detecting evidence of manipulation or the use of anti-forensics.
By contrast, player 2 wishes to minimize this quantity along with
some measure γ(·) of the perceptual distortion introduced into their
forgery by the use of anti-forensics. As a result, the utility of player
2 is

U2(η, k) = −U1(k, η)− γ
(
m(ψ), α(k)

m (m(ψ))
)
. (7)

If closed form expressions for the probabilistic quantities that
define U1 and U2 are known, then the Nash equilibrium strategies
(η∗, k∗) can be analytically derived using standard techniques. If
one player operates at their Nash equilibrium strategy, the other
player gains no advantage by choosing any other strategy, thus
both players have no incentive to deviate from the Nash equilibrium
strategies. If no closed for expression for these utilities exist, the
Nash equilibria can be determined numerically.

After the Nash equilibrium strategies have been identified,
the probability that the forensic investigator detects a forgery is
given by evaluating U1(η

∗, k∗). Since both the Nash equilibrium
strategies and probability of forgery detection are influenced by
the forensic investigator’s false alarm constraint ξ, these quantities
will likely change as ξ is varied. By determining the probability
of forgery detection at the Nash equilibrium for each ξ ∈ [0, 1], a
new ROC curve can be constructed showing the forensic investi-
gator’s ability to detect forgeries if both players act rationally. We
define this ROC curve as the Nash equilibrium receiver operating
characteristic curve, or NE ROC curve.

IV. EXAMPLE USING VIDEO FORENSICS AND
ANTI-FORENSICS

To provide an example of how our proposed evaluation tech-
niques apply to real forensic scenarios, we demonstrate them on
the problem of video forensics and anti-forensics.

In many scenarios, a video forger may wish to delete a sequence
of frames from a digital video. This may be done to hide evidence
of a particular event. In prior work, Wang and Farid demonstrated
that a forensically detectable fingerprint is left in MPEG videos by
frame deletion [8]. This fingerprint takes the form of periodic spikes
in the total motion prediction error in the video’s P-frames. Wang
and Farid proposed detecting this fingerprint by visually inspecting
the sequence of total motion prediction errors in a video’s P-frames
for periodic spikes.

Recently we proposed an anti-forensic technique capable of
preventing frame deletion fingerprints from occurring in forged
videos [3]. It operates by increasing the total motion prediction
error for each P-frame to the level of these spikes in prediction error
so that they are no longer detectable. If the total motion prediction
error of a P-frame does not correspond to a spiky value, we set
several of that P-frame’s motion vectors to zero then recalculate its
motion prediction error. Since setting the motion vectors to zero
will result in a poorly predicted frame, the motion prediction error
will increase.

We note that since both the anti-forensically modified motion
vectors and the associated prediction error are used to reconstruct
the frame during MPEG decoding, this anti-forensic technique will
introduce essentially no distortion into the video. This is because
even after anti-forensic modification, a frame is still equal to the
sum of the motion prediction version of the frame and its prediction
error. A detailed explanation of both frame deletion fingerprints and
our anti-forensic technique can be found in [3].

Here we propose an automatic technique for detecting frame
deletion. It operates by first median filtering the sequence of total
motion prediction errors in each P-frame to obtained a smoothed
version. Next this smoothed prediction error sequence is subtracted
from the actual prediction error sequence, and the DFT of the
resulting signal is calculated. If frames have been deleted from or
added to the video, a peak will occur in the frequency bin k = N/T
where N is the length of the sequence of P-frame prediction errors
and T is the number of P-frames that the video encoder places
in each group of pictures. To perform detection, we measure the
strength of this peak and compare it to a decision threshold.

Additionally, we propose a technique to detect the use of video
anti-forensics. This technique exploits the fact that even though
anti-forensic modification sets several of a video’s motion vectors
to zero, the true motion between video frames is unchanged.
It operates by first decompressing a video, then estimating its
motion vectors as if we wished to re-encode it. For each P-
frame, we calculate the mean Euclidean distance between our
estimated motion vectors and the motion vectors contained in the
compressed video. If the video has been anti-forensically modified,
the Euclidean distance between the motion vectors will be large
for frames that have been anti-forensically modified. Otherwise,
the estimated motion vectors will closely match those used during
compression. As a result, we create a feature vector containing
the mean Euclidean distance between both sets of motion vectors
across all frames, along with a measurement of the periodicity of
the sequence of distance between both sets of motion vectors. We
use principal component analysis to reduce the dimensionality of
this vector to a single dimensional feature and perform detection
by comparing this feature to a decision threshold.

V. EXPERIMENTAL RESULTS

To evaluate the performance of each of these forensic and
anti-forensic techniques, we compiled a database of 21 standard
uncompressed video sequences such as the ‘Foreman’ and ‘Car-
phone’ sequences. Next we simulated MPEG-2 compression and
decompression in Matlab and used this simulation to compress each
video in our database. We then decompressed each video, deleted a
number of frames from it, and recompressed each video both with
and without using anti-forensics. We tested each of the resulting
videos for evidence of frame deletion and the use of anti-forensics.
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Fig. 2. Experimental results showing (a) ROC curve for our proposed frame deletion detection technique, (b) ROC curve for frame deletion detection if
anti-forensics is used, (c) plot showning the anti-forensic susceptibility of our frame deletion detector to our anti-forensic technique, and (d) ROC curve
for our proposed anti-forensics detection technique.

Fig. 2(a) shows an ROC curve displaying the performance of
our automatic frame deletion detection technique when tested on
videos that have not been anti-forensically modified. As can be seen
in this figure, frame deletion can be detected with aPd of 95% at
a false alarm rate less than 5%. This indicates that if anti-forensics
is not used, frame deletion can be detected very accurately.

Fig. 2(b) shows the ROC curve for our automatic frame deletion
detection technique if anti-forensics is used. We can see from this
figure that the performance of the detector is severely degraded if
anti-forensics is used. This is emphasized by the results displayed in
Fig. 2(c), which show the anti-forensic susceptibility of our frame
deletion detector to our anti-forensic attack. These results show
that for all Pfa ≤ 80%, our anti-forensic technique acheived an
anti-forensic susceptibility of .7 or greater. Furthermore, for all
Pfa ≤ 20%, the frame deletion detector performs no better than a
random decision if anti-forensics is used.

An ROC curve displaying the performance of our video anti-
forensics detection technique is shown in Fig. 2(b). These results
show that if anti-forensics is used at full strength, a Pd = 100%
can be achieved for a Pfa ≥ 10%.

After we measured the nominal performance of each of our
forensic and anti-forensic techniques, we used our game theoretic
framework to determine the probability of forgery detection at Nash
equilibrium. To do this, we modified our anti-forensic technique to
operate at variable strengths by making the anti-forensic increase in
each P-frame’s prediction error adjustable. We then modified each
video with several different anti-forensic strengths and performed
frame deletion and anti-forensics detection as before.

Because no distortion is introduced into the video by our
anti-forensic technique, the term γ(·) in (7) can be set to zero.
As a result, U2(k, η) = −U1(k, η), thus reducing the trade-
off between video forensics and anti-forensics to a zero sum
game. This allowed us to find the Nash equilibrium strategies
for a range of constraints on the forensic investigator’s PTot

fa by
using our experimental results to numerically solve the equation
(k∗, η∗) = argmaxη mink U1(k, η). We used this data to create
the NE ROC curve displayed in Fig. 3.

From this curve we can see that if the forensic investigator
must operate with a PTot

fa constraint of 5% or less, frame deletion
forgeries are difficult to detect. We note that for PTot

fa ≤ 5%, the
Nash equilibrium probability of forgery detection is less than the Pd

achieved by both the frame deletion detector and the anti-forensics
detector at the same false alarm level. This reinforces the notion
that the forger can create a more successful anti-forensic attack by
decreasing its strength. If the forensic examiner is able to relax
their PTot

fa constriant to 10% or greater, they will be able to detect
frame deletion forgeries at with at least 85% probability.

VI. CONCLUSIONS
In this paper, we have proposed a set of methods to evaluate the

effectiveness of anti-forensic techniques. Additionally, we have pro-
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Fig. 3. Nash equilibrium ROC curve for video frame deletion detection.

posed a game theoretic framework to analyze the dynamic interplay
between a forger and a forensic investigator. We have introduced
the Nash equilibrium ROC curve as a method of evaluating the
ability of a forensic investigator to detect a forgery when both
they and a forger are operating using optimal forensic and anti-
forensic strategies. We have proposed new forensics to detect frame
deletion in digital videos and to detect the use of frame deletion
anti-forensics. We have analyzed video frame deletion forensics
and anti-forensics using our proposed game theoretic framework
and shown that frame deletion forgeries are difficult to detect for
PTot
fa ≤ 5% but can be reliably detected for PTot

fa ≥ 10%.
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