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ABSTRACT

In the attempt to lay the basis for the construction of a theoretical
framework to cast forensics and anti-forensics techniques in, we in-
troduce a game-theoretic model for the source-identification prob-
lem with known statistics. The framework is used to derive the
Nash equilibrium for an asymptotic version of the game, in which
the players’ strategies and the payoff are defined in terms of the er-
ror exponents of the false positive and false negative probabilities.
The payoff at the equilibrium is evaluated and the conditions under
which the false negative error probability tends to zero derived.

1. INTRODUCTION

Research in multimedia forensics has recently start focusing on so-
called anti-forensics techniques, i.e. techniques aiming at impeding
making forensics analysis. As a result, we now know that most early
multimedia forensics techniques do not work properly if some sim-
ple countermeasures are taken to delete the traces left by the acqui-
sition device or the processing tool that has been used to create a
forgery [1, 2]. Researchers have thus started developing tools to de-
tect the traces left by anti-forensic algorithms [3], so to restore the
credibility of forensics analysis. While this iterative loop will finally
lead to powerful forensics and anti-forensics tools, the need to inves-
tigate the ultimate limits of forensics (and anti-forensics) techniques
clearly exists. In this paper we move a first step in this direction, by
laying the basis for a theoretical analysis of one of the most studied
problems in multimedia forensics, namely the source identification
problem. By relying on methods typical of game theory and infor-
mation theory, we propose a rigorous framework that can be used to
model the source identification problem and solve it in some partic-
ular cases. While we recognize that our analysis does not account
for all the subtleties involved in real forensics analysis and that the
statistical models adopted in our investigation do not account for the
complexity of real signals, we believe the proposed framework to
be a fundamental step towards the definition of more complex and
realistic models.

2. NOTATION AND DEFINITIONS

In the rest of this work we will use capital letters to indicate scalar
random variables, whose specific realizations will be represented by
the corresponding lower case letters. Sequences of length n will be
indicated either by Xn or xn according to their random or deter-
ministic nature; Xi, xi, will indicate the i−th element of Xn and
xn respectively. Information sources will also be defined by capital
letters. Calligraphic capital letters (e.g. X ) will be used to denote
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the alphabet of information sources. The probability density func-
tion (pdf) of a random variable X will be denoted by PX . The same
notation will be used to indicate the probability measure ruling the
emission of sequences from a source X , so we will use the expres-
sions PX(a) and PX(xn) to indicate, respectively, the probability
of symbol a ∈ X and the probability that the source X emits the
sequence xn. Given an event A, we will use the notation PX(A)
to indicate the probability of the event A under PX . Given two se-
quences xn and yn, asymptotic equality in the logarithmic scale will
be indicated as xn .

= yn, meaning that:

lim
m→∞

1

m
log

„
xm

ym

«
= 0. (1)

Throughout the paper we make extensive use of the concept of type

class defined as follows [4]. Let P̂xn indicate the empirical proba-

bility distribution induced by the sequence xn ∈ Xn, i.e. P̂xn(a) =
1
n

Pn
i=1 δ(xi, a), with δ(xi, a) = 1 if xi = a and zero otherwise.

The type class T (xn) of xn, is the set of sequences x̃n ∈ Xn such

that P̂x̃n = P̂xn . Given a type class T , we will indicate by P̂T the
empirical probability density function induced by the sequences in
T . The Kullback-Leibler (KL) divergence between two distributions
P and Q defined on the same finite alphabet X is given by:

D(P ||Q) =
X
a∈X

P (a) log
P (a)

Q(a)
, (2)

where, as usual, 0 log 0 = 0 and p log p/0 = ∞ if p > 0.

2.1. Game theory
Game theory is a branch of mathematics devoted to the analysis of
strategic situations, referred to as games, in which the success of one
player depends on the choices made by the other players. Here we
are concerned with the class of strategic, 2-players, zero-sum games.
In this setup, a game is defined as a 4-uple G(S1,S2, u1, u2), where
S1 = {s1,1 . . . s1,n1} and S2 = {s2,1 . . . s2,n2} are the set of
strategies (actions) the first and the second player can choose from,
and ul(s1,i, s2,j), l = 1, 2 is the payoff of the game for player l,
when the first player chooses the strategy s1,i and the second chooses
s2,j . A pair of strategies s1,i and s2,j is called a profile. In a zero-
sum competitive game the win of a player is equal to the loss of
the other, so we have u1(s1,i, s2,j) + u2(s1,i, s2,j) = 0. In this
case, without loss of generality, we can specify the payoff of the first
player (generally indicated by u), with the understanding that the
payoff of the second player u2 is equal to −u. A common goal in
game theory is to determine the existence of equilibrium points. The
most common definition of equilibrium is the one due by Nash [5].
For the particular case of a 2-player game, a profile (s1,i∗ , s2,j∗) is
a Nash equilibrium if:

u1((s1,i∗ , s2,j∗)) ≥ u1((s1,i, s2,j∗)) ∀s1,i ∈ S1

u2((s1,i∗ , s2,j∗)) ≥ u2((s1,i∗ , s2,j)) ∀s2,j ∈ S2,
(3)
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where for a zero-sum game u2 = −u1. In practice, a profile is a
Nash equilibrium if each player does not have any interest in chang-
ing its choice assuming the other does not change its strategy.

3. SOURCE IDENTIFICATION WITH KNOWN SOURCE

Our definition of the Source Identification (SI) game starts by ob-
serving that the task of the Forensics Analyst (FA) is the definition of
a test to accept or reject the hypothesis that the sequence under anal-
ysis was produced by a certain source X . On the other side, the goal
of the adversary (AD) is to take a sequence generated by a different
source and modify it in such a way that the FA accepts the hypoth-
esis that the modified sequence has been generated by X . In doing
so the AD may want to minimize the amount of modifications it has
to introduce to deceive the FA. We assume that both the FA and the
AD know the source X . While this may seem an oversimplified as-
sumption, the resulting scenario already contains all the ingredients
necessary to define a well-posed multimedia forensics game and rep-
resents a starting point for the analysis of more realistic situations.
As to the source Y , we initially assume that it is known to both the
FA and the AD. In a second step, we will see that, at least in the
asymptotic version of the game, the assumption that the FA knows
Y may be removed. Let, then, X � PX and Y � PY be two known
sources with finite alphabet X . Let yn be a sequence drawn from
Y and let zn be a modified version of yn produced by the AD. Let
H0 be the hypothesis that the test sequence has been generated by
X , and let H1 be the opposite hypothesis that the sequence has been
generated by Y . We define the source identification game under the
known source assumption (SIks) as follows.

Definition 1. The SIks(SFA,SAD, u) game is a zero-sum, strate-
gic, game played by the FA and the AD, defined by the following
strategies and payoff.

• SFA is the set of acceptance regions for H0 for which the
false positive probability (i.e. the probability of rejecting H0

when H0 is true) is below a certain threshold:

SFA = {Λ0 : PX(xn /∈ Λ0) < Pfp}, (4)

where Λ0 is the acceptance region for H0 and Pfp is a pre-
scribed maximum false positive probability1.

• SAD is formed by all the functions that map a sequence yn

produced by Y into a new sequence zn subject to a distortion
constraint:

SAD = {f(yn) : d(yn, f(yn)) ≤ nD}, (5)

where d(·, ·) is a proper distance function and D is the maxi-
mum allowed per-letter distortion.

• The payoff function is defined in terms of false negative error
probability (Pfn), namely:

u(Λ0, f) = −Pfn = −
X

yn:f(yn)∈Λ0

PY (yn). (6)

The above definition also clarifies why we had to assume that
the FA knows PY . In fact, this is a necessary assumption, since for
a proper definition of the game it is required that both players have
a full knowledge of the payoff for all possible profiles. Solving the
SIks game as stated in definition 1 is a cumbersome task, hence we
introduce an asymptotic version of the game that can be solved more

1Similarly we will indicate by Λ1 = Λc
0 the acceptance region for H1.

easily by resorting to methods typical of information theory. To do
so, we replace the error probabilities of the two kinds with the corre-
sponding asymptotic quantities. More specifically, the definition of
the new version of the game relies on the error exponents of Pfp and
Pfn defined as:

εfp = − lim
n→∞

1

n
log Pfp, εfn = − lim

n→∞
1

n
log Pfn. (7)

We can now introduce the asymptotic version of the SIks game.

Definition 2. The SI∞
ks(SFA,SAD, u) game is a game between the

FA and the AD defined by the following strategies and payoff:

SFA = {Λ0 : εfp ≥ λ}, (8)

SAD = {f(yn) : d(yn, f(yn)) ≤ nD}, (9)

u(Λ0, f) = εfn (10)

where λ is the minimum false error exponent admissible by the FA.

3.1. Equilibrium point of SI∞
ks for FA with limited resources

Finding the equilibrium point(s) for the SI∞
ks game is not trivial. The

error probabilities of the two kinds for a given profile are not easy
to calculate and even more difficult to optimize. For this reason we
decided to face with this problem by limiting the kind of acceptance
regions the FA can choose from. As in [6], we limit the complexity
of the analysis carried out by the FA by confining it to depend on a
limited set of statistics computed on the test sequence. To simplify
the analysis, in the subsequent derivation we assume that the sources
X and Y are memoryless, however our arguments can be extended to
other source classes as outlined in section 3.4. Given the memoryless
nature of X and Y , it makes sense to require that the FA bases its

decision by relying only on P̂xn , i.e. on the empirical probability

density function induced by the test sequence. Note that P̂xn is not
a sufficient statistics for the FA; in fact, even if Y is a memoryless
source, the AD could introduce some memory within the sequence
as a result of the application of f . This is the reason why we need
to introduce explicitly the requirement that the FA bases its decision

only on P̂xn . Our derivation starts with the following lemma.

Lemma 1. Let Λ∗
1 be defined as follows:

Λ∗
1 =

j
xn : D(P̂xn ||PX) ≥ λ − |X | log(n + 1)

n

ff
(11)

and let Λ∗
0 be the corresponding acceptance region. Then we have:

1. εfp ≥ λ,

2. for every Λ0 ∈ SFA (with SFA defined as in equation (8))
we have Λ1 ⊆ Λ∗

1.

Proof. The proof of the lemma is easily obtained by adopting the
same approach used in [6] (section II, Theorem 1), and is omitted
here for sake of brevity.

The first point says that Λ∗
0 defines a valid strategy for the FA,

while the second one implies the optimality of Λ∗
1. In fact, if for a

certain strategy of the AD, zn /∈ Λ∗
1, a fortiori we have that zn /∈ Λ1

for any other choice of Λ1 hence resulting in a higher Pfn. An in-
teresting consequence of lemma 1 is that the optimum strategy for
the FA does not depend on: i) the strategy chosen by the AD, and
ii) PY , i.e. the optimum strategy is universally optimal across all
the sources Y . As we anticipated, this result makes the assumption
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that the FA knows PY un-necessary. We also observe that the strat-
egy expressed by equation (11) has a simple heuristic interpretation:
the FA will accept only the sequences whose empirical pdf is close
enough (in divergence terms) to PX .

We now pass to the determination of the optimum strategy for
the AD. Since the acceptance region is fixed, the AD can optimize
its strategy by assuming that Λ0 = Λ∗

0. We start by observing that
the goal of the AD is to maximize Pfn. Such a goal is obtained by
trying to bring the sequences produced by Y within Λ∗

0. In doing so
the AD must only respect the constraint that d(yn, f(yn)) ≤ nD.
The optimum strategy for the AD can then be expressed as follows:

f∗(yn) = arg min
zn:d(zn,ym)≤nD

D(P̂zn ||PX). (12)

Together with lemma 1, the above observation permits to state the
first fundamental result of the paper.

Theorem 1. The profile (Λ∗
0, f

∗) defined by lemma 1 and equation
(12) defines a Nash equilibrium for the SI∞

ks game.

Proof. Adapting equation (3) to the case at hand yields:

u(Λ∗
0, f

∗) ≥ u(Λ0, f
∗) ∀Λ0 ∈ SFA (13)

−u(Λ∗
0, f

∗) ≥ −u(Λ∗
0, f) ∀f ∈ SAD. (14)

By remembering that for the SI∞
ks game u is the false negative error

exponent, the inequality (13) derives immediately from lemma 1. In
the same way, since f∗ maximizes the false negative error probabil-
ity given Λ∗

0, the inequality (14) is always verified.

3.2. Payoff at the equilibrium
The next step is the computation of the payoff at the equilibrium,
i.e. the best achievable εfn for the FA. Given the asymptotic na-
ture of the game, it is easy to foresee that Pfn will either tend to 0
(strictly positive ε) or to 1 (ε = 0) for n → ∞ depending on the
relationship between the maximum allowed distortion and the KL-
divergence between PX and PY . In this framework we are interested
in understanding the conditions under which Pfn tends to 0, and the
value of εfn in this case2.

Let Γfn be the set of sequences generated by Y that can be
moved into Λ∗

0 since they are close enough to such a set, and let Γc
fn

be the complement of Γfn. We can write:

Γfn = {yn : ∃ zn ∈ Λ∗
0 : d(yn, zn) ≤ nD} . (15)

The false negative error probability is clearly equal to the probability
that yn ∈ Γfn. The problem of determining Γfn is complicated by
the adoption of different distance measures for the definition of Λ∗

0

and to specify the distortion constraint. Interesting conclusions can
be drawn when the Hamming distance is used to evaluate d(yn, zn).
To do so we rely on the following lemma.

Lemma 2. The set:

Γfn = {yn : ∃zn ∈ Λ∗
0 : dH(yn, zn) ≤ nDH}

is still a union of type classes. Specifically we have:

Γfn = Γ∗ =
n

T : ∃T ′ ∈ Λ∗
0 : ||P̂T − P̂T ′ ||L1 ≤ 2DH

o
, (16)

where the L1 distance between P̂T and P̂T ′ is defined as:

dL1(P̂T , P̂T ′) = ||P̂T − P̂T ′ ||L1 =
X
a∈X

|P̂T (a) − P̂T ′(a)|. (17)

2In the same way we could investigate how fast the probability of a correct
decision tends to zero when εfn = 0. Such an analysis follows exactly the
same lines we will use for the computation of εfn and will not be detailed.

Proof. We start by proving that a sequence whose empirical pdf has
a distance larger than 2nDH from the pdf of all the sequences in Λ∗

0

can not belong to Γfn. Let yn and zn be two sequences, and let P̂yn

and P̂zn be their empirical pdf’s. The L1 distance between P̂yn and

P̂zn can be rewritten as follows:

||P̂yn − P̂zn ||L1 =
X

a∈X+

[P̂yn(a) − P̂zn(a)]

+
X

a∈X−
[P̂zn(a) − P̂yn(a)]

= 2
X

a∈X+

[P̂yn(a) − P̂zn(a)], (18)

where X+ (res. X−, X=) indicates the set of a’s for which
P̂yn(a) > P̂zn(a) (res. P̂yn(a) < P̂zn(a), P̂yn(a) = P̂zn(a)),
and where the last equality follows from the observation that:

X
a∈X−

P̂yn(a) = 1 −
X

a∈X+

P̂yn(a) −
X

a∈X=

P̂yn(a). (19)

Let us consider now the Hamming distance between the sequences
yn and zn. By considering X+, we see that dH(yn, zn) is larger

than or equal to
P

a∈X+ n[P̂yn(a) − P̂zn(a)]. In fact, for each

a ∈ X+, there must be at least n[P̂yn(a) − P̂zn(a)] positions in
which the sequences yn and zn differ, so to justify the presence

of n[P̂yn(a) − P̂zn(a)] more a’s in yn than in zn, thus yielding

n||P̂yn −P̂zn ||L1 ≤ 2dH(yn, zn). For the sequences yn that do not

satisfy equation (16), we have ||P̂yn − P̂zn ||L1 > 2DH , ∀zn ∈ Λ∗
0,

yielding

2DH < ||P̂yn − P̂zn ||L1 ≤ 2dH(yn, zn)

n
, (20)

proving that Γfn ⊆ Γ∗. We now show that Γ∗ ⊆ Γfn. Let yn be a
sequence in Γ∗. Then there exists a type class T ′ ∈ Λ∗

0 whose pdf

has an L1 distance from P̂yn lower than or equal to 2DH . Starting
from yn we can easily build a new sequence zn whose type is equal

to P̂T ′ by proceeding as follows. Let X+ be the set of a’s for which

P̂yn(a) > P̂T ′(a). For each a ∈ X+ we take n[P̂yn(a) − P̂T ′(a)]
positions where yi = a, and replace a with a value b ∈ X−, in such

a way that at the end we have P̂zn(a) = P̂T ′(a) ∀a ∈ X . Note that
this is possible since we have

X
a∈X+

[P̂yn(a) − P̂T ′(a)] =
X

b∈X−
[P̂T ′(b) − P̂yn(b)]. (21)

Since to pass from yn to zn we modified only
P

a∈X+ n[P̂yn(a)−
P̂T ′(a)] positions of yn we have:

dH(yn, zn) =
X

a∈X+

n[P̂yn(a) − P̂T ′(a)]

=
n||P̂ n

y − P̂T ′ ||L1

2
≤ nDH , (22)

showing that yn ∈ Γfn, and hence Γ∗ ⊆ Γfn, thus concluding the
proof of the lemma.

Lemma 2 permits to understand if Pfn tends to 0 or 1. To do so,
we introduce the set Γ∞

fn defined as the union of the empirical pdf’s
contained in Γfn for all n. We can distinguish two cases: PY may
either belong to Γ∞

fn or not. In the first case Pfn tends to 1, otherwise
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it tends to 0 and the probability that the FA does not distinguish
original and fake sequences gets vanishingly small for increasing n.
Specifically, the following theorem holds.

Theorem 2. For the SI∞
ks game with an FA with limited resources

and Hamming distance, the payoff at the equilibrium is:

1. εfn = 0, if PY ∈ Γ∞
fn;

2. εfn = arg min
P̂∈Γ∞

fn

D(P̂ ||PY ), if PY /∈ Γ∞
fn.

Proof. Point 1 derives from the law of large numbers. Point 2 is a
consequence of lemma 2 and Sanov’s theorem ([4], chapt. 12).

Theorem 2 states that when PY ∈ Γ∞
fn the probability of a cor-

rect decision by the FA tends to zero. The asymptotic rate by which
such a probability tends to zero can again be obtained by invoking
Sanov’s theorem.

3.3. Bernoulli sources
Let X ∼ B(p) and Y ∼ B(q) be Bernoulli sources with parameters
p and q respectively. In this case the acceptance region for H0 as-

sumes a very simple form. In fact, the KL-divergence between P̂xn

and PX depends only on the number of 1’s in xn, the divergence
being a monotonic increasing function of |nx(1)/n − p|, where we
indicated with nx(1) the number of 1’s in xn. As a consequence the
acceptance region may be defined in terms of nx(1) only:

Λ∗
0 = {xn : nx(1) ∈ [ninf (λ), nsup(λ)]} , (23)

with ninf and nsup derive from the equality3 D(P̂xn ||PX) = λ −
|X | log(n + 1)/n. The optimum strategy of the AD is also easy
to define. Given the monotonic nature of the KL-divergence noted
above, the AD will increase (decrease) the number of 1’s in yn to
make the relative frequency of 1’s in zn as close as possible to p.
The AD will succeed in inducing a decision error if the number of
ones in zn belongs to the interval [ninf , nsup]. Since the distortion
constraint states that d(yn, zn) ≤ nDH , we have:

Γfn = {yn : ny(1) ∈ [ninf (λ) − nDH , nsup(λ) + nDH ]} ,
(24)

with the boundaries of the interval truncated to 0 or n when needed.
For the computation of the payoff of the game at the equilibrium we
may distinguish 2 cases:

• q ∈ Γ∞
fn = [νinf − DH , νsup + DH ];

• q /∈ Γ∞
fn = [νinf − DH , νsup + DH ],

where νinf and νsup are obtained by letting D(P̂ ||PX) = λ. In the
first case εfn = 0 and Pfn tends to 1 for n → ∞, in the second case
Pfn tends to 0 for n → ∞ and the error exponent can be computed
by resorting to Sanov’s theorem. Let us suppose for instance that
q > νsup + DH . The type in Γ∞

fn closest to PY in divergence is a
Bernoulli source with parameter p∗ = νsup + DH , and hence the
payoff of the game will be εfn = D(B(p∗)||B(q)).

3.4. Non-binary sources and sources with memory
Finding a closed-form solution for the case of multi-valued sources
and distances other than the Hamming distance seems a prohibitive
task. While the formula defining the optimum acceptance region
does not change and can be easily implemented by the FA, the task
of the AD is more complex due to the necessity of solving the mini-
mization problem in (12). In this case, the resort to numerical meth-
ods appears unavoidable.

3Note that we may have ninf = 0 and/or nsup = n, since the equality
may admit a solution only for nx(1) > np, nx(1) < np, or no solution.

The existence of a Nash equilibrium for the SI∞
ks game has been

proved by assuming that the FA is restricted to base its analysis
on the empirical pdf of the test sequence. This assumption makes
sense for the class of DMS sources whose characteristics are com-
pletely described by first order statistics, but is no more reasonable
for sources with memory. A closer inspection of the methods used in
sections 3.1, and 3.2, however, reveals that the analysis carried out
therein can be extended to sources with memory, as long as the con-
cepts of types and type classes can still be used. This is the case, for
instance, of finite-order Markov sources, a model that is commonly
used to described a wide variety of sources with memory. In fact, it is
known that for this kind of sources, the number of type classes grows
polynomially with n [7], hence making the extension of our analysis
straightforward. Renewal processes are another class of sources that
is amenable to be analyzed by relying on the concept of types. Re-
newal processes [8] can be used, for instance, to model run length se-
quences and hence could be of interest in forensics problems dealing
with compressed streams adopting run-length coding (e.g. the JPEG
coding standard). In [8], it is shown that the number of type classes
of renewal processes grows sub-exponentially with n, thus opening
the way to the extension of our analysis to this class of sources.

4. CONCLUSIONS

The definition of the SIks and SI∞
ks games, and the derivation of the

Nash equilibrium of SI∞
ks , represent a first step towards the construc-

tion of a rigorous theoretical framework to cast multimedia forensics
and anti-forensics in. While the theoretical models will never be able
to capture all the details encompassed by real multimedia forensics,
we believe that they can highlight the basic trade-offs involved in
forensics analysis in the presence of an adversary, and be a useful
tool to guide future research in this area. In a future work we will
focus on the extension of the results presented in this paper to more
realistic models, e.g. Markov sources, or continuous sources, and on
the definition of the source identification game when the sources are
known only through the availability of training data.
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