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ABSTRACT
The ability to detect a particular speech codec from only the

decoded audio has several useful forensic and system perfor-

mance improvement applications. This paper presents a novel

scheme for non-intrusive identification of speech codecs. The

identification approach is based upon comparing a profile of

a set of noise spectra and a time-domain histogram from the

decoded speech to those from the candidate codecs. The pre-

sented results show a very high accuracy in identifying speech

contemporary codecs from a diverse set of types and encod-

ing rates. The presented codec identification scheme has a

very low misidentification rate, including in the high coding

rate regime where it improves on previous works by achiev-

ing perfect identification. This performance is achieved while

reducing the duration of the analysis window of speech from

2 minutes to only 4 seconds.
Index Terms— Speech forensics, speech coding, vocoder,

identification, processing traces.

1. INTRODUCTION
Decades of research into speech coding for telecommunica-

tions networks has resulted in the development of numerous

codecs. Since the performance of other speech processing

subsystems in the network varies with the codec being used,

identifying this codec from the decoded speech presents nu-

merous valuable applications. For example, the identification

of the speech codec would allow for more accurate online

voice quality estimation in VoIP Networks [1], would also al-

low for speech recognition algorithms that are more accurate

by being tailored to the codec in use [2] and even enable tar-

geted content delivery (e.g. a consumer navigating a voice

menu system during a call to their cable internet provider

might be presented with an advertisement for VoIP phone ser-

vice if the system detects that the user is calling from a cellu-

lar or PSTN network). Furthermore, since usually each com-

munication network or application utilizes its own standard-

ized codec (e.g. a call through a GSM cellular network would

use the AMR codec and a Skype VoIP call would use Silk),

the identification of the speech codec from decoded speech

has obvious key forensic use to identify call provenance and

to detect doctored speech sequences and instances of caller

ID spoofing.

Despite the numerous applications, little research can be

found in this area. A method to identify the provenance of

speech calls can be found in [3]. Since the focus of [3] is in

identifying the call provenance, and not necessarily the spe-

cific codec used, the presented technique is based on identify-

ing artifacts specific to each possible path (VoIP, landline or

cellular networks) such as signs of packet drops for VoIP, and

noise profiles differentiating landline and cellular networks.

The work in [4] presents a technique for the identification of

speech codecs that is based on distinguishing the noise spec-

trum characteristic of each codec. This noise spectrum is cal-

culated from the difference between the actual spectrum and

a harmonic spectrum, resulting from the harmonic/noise de-

composition from the multiband excitation (MBE) vocoder

model [5]. This approach shows accurate results in identify-

ing many speech codecs, but it does so at the cost of a using a

very long analysis window of about 2 minutes of audio. In ad-

dition, the accuracy of this approach is degraded when trying

to identify codecs operating at high coding rates.

This paper presents a novel technique that improves upon

the approach in [4] and results in highly accurate identifica-

tion of the codec with which an unknown signal has been pro-

cessed. The technique is based on the decoded speech stream

only, and does not require access to the channel bitstream

or knowledge of the original speech sample. Because most

speech compression schemes are lossy, the presented tech-

nique is based on identifying the traces of the lossy signal

processing operations that are present in the decoded speech.

The results presented in this paper will show very high accu-

racies in identifying the speech codec, including those oper-

ating at high coding rates. This is achieved even when using

a short analysis window of only 4 seconds.

2. IDENTIFICATION OF SPEECH CODEC FROM
SIGNAL PROCESSING TRACES

The goal of the developed technique is to process a sequence

of decoded speech so as to identify the codec used. The result

of such processing should be, when analyzing speech samples

from the same codec, largely independent of speaker char-

acteristics, such as pitch range and formant structure. Con-

versely, the output of such processing should vary signifi-

cantly when analyzing speech samples from different codecs,

even if the original input signal to the encoders was identical.

The presented novel technique augments the identifica-
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tion criteria in [4], which performs codec identification using

only one feature of the input speech (the noise spectrum com-

puted by subtracting the decoded speech spectrum from the

spectrum of the MBE modeled speech signal), by creating a

multidimentional profile whose features include noise spec-

tra from multiple speech models. As will be seen, this ap-

proach significantly improves the identification performance.

Furthermore, because the noise spectrum does not carry in-

formation about the time domain representation of the input

signal, a time domain amplitude histogram is also added to

the profile in order to capture possible quantization patterns

imparted by the codec. The profile is therefore a set of prop-

erties computed from the input signal that attempt to provide

a fingerprint of certain input signal characteristics and signal

processing traces that are related to a specific source codec.

The presented codec identification technique is shown in

Fig. 1. First, the input speech, x(t), previously encoded and

decoded with an unknown codec, is reprocessed by each of

the candidate codecs by undergoing a new encoding-decoding

processing. Speech codecs typically employ some sort of un-

derlying speech synthesis model. For example, the MBE

vocoder model generates speech by providing pitch infor-

mation, and voicing decision, phase, and amplitude for each

harmonic band in a given frame of speech. More common

vocoders typically provide information about the pitch, for-

mant envelope, and excitation signal for the frame of speech.

In either case, the output of a given vocoder is generated di-

rectly from applying such parameters to some form of human

speech synthesis model. In a sense, then, reprocessing the

speech with a codec eliminates signal components that are not

part of human speech in accordance with that codec’s under-

lying speech synthesis model, and outputs a perfect speech

signal as conformed to the model. In addition, the reprocess-

ing of the decoded speech will result in a noise spectrum with

a more clearly defined features for the codec truly originally

used and a more non-descriptive noise spectrum, with less

defined features, for the rest of the candidate codecs.

Each of the speech sequences at the output of each

codec reprocessing stage, x1(t), x2(t), . . . , xm(t), is then

windowed into frames of 256 samples (32 ms at an 8 kHz

narrowband sampling rate) with a 50% overlap. It is im-

portant to select a frame length that is both long enough to

provide an adequate number of samples for analysis and short

enough for the audio signal to remain fairly stationary. A

segment of between 10 and 40 ms is generally regarded to

be an appropriate frame length for speech signal analysis [6].

The speech is then processed by a voicing activity detector to

determine whether each frame is voiced, unvoiced, or silence.

In general, most of the effort in speech coding is spent on

the modeling and compression of voiced speech, as voiced

speech accounts for more of the bandwidth of the coded sig-

nal. Significantly, the coding of voiced speech accounts for

the more sophisticated techniques, including those frequency

domain processing that would leave detectable traces in the

noise spectrum. Unvoiced speech is usually synthesized by

passing random noise through a simple filter, and silence

might be neglected altogether or be encoded into some form

of very low bit rate background comfort noise. Thus, it is

expected that any distinguishing characteristics in the output

signal from a speech codec will be prevalent in the voiced

frames, and we discard any unvoiced or silent frames from

further analysis.

Next, the voiced frames from each of the audio streams

xv
1(t), x

v
2(t), . . . , x

v
m(t) are transformed into the frequency

domain by means of a Fast Fourier transform (FFT). Each

frame is first multiplied by a hamming window and zero

padded to L = 4096 points in order to increase the frequency

resolution of the resulting magnitude spectra, |Xj |, j =
1, . . . ,m. Each of these spectra is subtracted from the magni-

tude spectrum of the corresponding frame in the original input

signal, x(t) to form the noise spectra |XN,j | = |X| − |Xj |.
These noise spectra represent the spectral differences between

a perfectly modeled rendition of speech and the actual input

signal, thereby helping to reveal some of the artifacts im-

parted on the original speech from the codec. As more frames

are processed, the noise spectra are accumulated for up to

k voiced frames to capture a variety of voiced phonemes.

These aggregated noise spectra, call them X̂N,j , collectively

form a profile that characterizes the codec present in the orig-

inal input signal in conjunction with the codec used during

reprocessing.

However, by analyzing the input signal only in the fre-

quency domain, we neglect the possibility of extracting valu-

able traces of the signal processing that manifest themselves

in the time domain. Codecs may be limited in the range or set

of sample amplitudes that can occur at the output. For exam-

ple, the output samples from ITU-T G.711 codecs are quan-

tized to set of 256 discrete amplitudes from among the usual

16-bit linear PCM space used for representation in memory.

Thus, in our approach, a histogram of the input speech sam-

ple amplitudes (including from voiced, unvoiced, and silent

frames) is also collected and used as a feature of the profile

for the input signal.

Before being able to identify codecs from signals of un-

known origin, it is necessary to first generate a set of training

profiles from known codecs against which to compare. In

this research, we are interested in detecting the following m
diverse collection of codecs: G.711, G.726, G.728, G.729,

iLBC, AMR Narrowband, and Silk. To create the training

profiles, 100 randomly selected speech samples from the

“training” partition of the Texas Instruments/MIT (TIMIT)

speech corpus [7] were processed by each of the m codecs,

and then profiled using the previously described strategy.

To determine the codec that is present in an unknown

signal, the new signal must be profiled, and then its profile

compared to each of the training profiles. This comparison

is performed through the use of several normalized cross-

correlations between corresponding features in each profile.
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Fig. 1. Profiling strategy for audio samples

The normalized cross-correlation function is shown in (1).

This equation demonstrates the comparison between a noise

spectrum, X̂N , from the unknown signal’s profile and the

corresponding noise spectrum, X̄N , from a trained profile,

although it is also used to compare the histograms between

profiles.

ρ =

〈
X̄N , X̂N

〉

‖X̄N‖‖X̂N‖ =

∑L
i=1 X̄N [i]X̂N [i]∗√∑L

i=1 |X̄N [i]|2
√∑L

i=1 |X̂N [i]|2
(1)

The normalized cross-correlations are then used to com-

pute comparison metrics as shown in (2). The values yi, i =
1, . . . ,m are a score measuring how closely the unknown

profile matches the training profile of the i-th codec. These

scores yi are calculated as the weighted sum of values

ρi,j , j = 1, . . . ,m, h. The values ρi,j , j = 1, . . . ,m, h
are the normalized cross-correlation of the j-th profile fea-

ture (where 1, . . . ,m are the noise spectra from the m voice

models, one for each candidate codec, and h = m + 1 is

the histogram) between the unknown profile and the training

profile of the i-th codec.
⎡
⎢⎢⎢⎣

y1
y2
...

ym

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

ρ1,1 ρ1,2 · · · ρ1,m ρ1,h
ρ2,1 ρ2,2 · · · ρ2,m ρ2,h

...
...

. . .
...

...

ρm,1 ρm,2 · · · ρm,m ρm,h

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

a1
a2
...

am
ah

⎤
⎥⎥⎥⎥⎥⎦

(2)

The weights aj in (2) take into consideration that the

different profile features are not equally effective at correctly

identifying a particular codec. Through extensive empirical

testing that measured the accuracy of the codec detection

scheme using different weights, we observed that the his-

togram is the most effective feature in successfully identify-

ing codecs and that all m noise spectra were approximately

equally effective between themselves. Thus, the histogram

was assigned half of the overall weight, while the other half

was uniformly distributed among the m noise spectra, as

shown in (3). ⎡
⎢⎢⎢⎢⎢⎣

a1
a2
...

am
ah

⎤
⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎣

1/2m
1/2m

...
1/2m
1/2

⎤
⎥⎥⎥⎥⎥⎦

(3)

Finally, the codec originally used is determined from the

scores yi through the decision
Codec Index = argmax

i
yi : yi ∈ {y1, y2, . . . , ym} (4)

3. RESULTS
To test the proposed identification scheme, speech segments

from all 168 speakers in the “test” partition of the TIMIT

speech corpus were used. This ensures that all speakers and

sentences used in testing are mutually exclusive from those

that were used to create the training profiles. Each speaker’s

speech clips are truncated or concatenated as necessary to

form a speech sequence that contains exactly k voiced frames.

For the majority of our experiments, an analysis length of

k = 160 voiced frames is used. For the particular voicing

activity detection algorithm used in our research, this corre-

sponds to an average of 3.94 seconds of audio per speaker.

These audio clips are processed by several codecs at differ-

ent bitrate settings to form the set of input signals (168 for

each source codec). Each input signal is then profiled and

compared to the training profiles following the procedure ex-

plained in the previous Section. The set of candidate codecs

was chosen to be diverse in the underlined technique used and

the coding rate. The candidate codecs where: G.711 (wave-

form μ-law companding at 64 kbit/s), G.726 (waveform AD-

PCM, with rates 16, 24, 32 and 40 kbit/s), G.728 (low delay
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Classified As

G.711 G.726 G.728 G.729 iLBC AMR Silk

S
o
u
rc

e
C

o
d
ec

G.711 μ-law 100.00% - - - - - -

G.726

40 kbit/s - 100.00% - - - - -

32 kbit/s - 100.00% - - - - -

24 kbit/s - 100.00% - - - - -

16 kbit/s - 100.00% - - - - -

G.728 16 kbit/s - - 100.00% - - - -

G.729

11.8 kbit/s - - - 96.43% 0.60% - 2.98%

8 kbit/s - - - 100.00% - - -

6.4 kbit/s - - - 100.00% - - -

iLBC
15.2 kbit/s - - - 11.90% 88.10% - -

13.33 kbit/s - - - 14.29% 85.71% - -

AMR

12.2 kbit/s - - - - - 100.00% -

10.2 kbit/s - - - - - 100.00% -

7.95 kbit/s - - - - - 100.00% -

7.4 kbit/s - - - - - 100.00% -

6.7 kbit/s - - - - - 100.00% -

5.9 kbit/s - - - - - 100.00% -

5.15 kbit/s - - - - - 100.00% -

4.75 kbit/s - - - - - 100.00% -

Silk VBR - - - 21.43% - - 78.57%

Table 1. Results for analysis k = 160 voiced frames (3.94 sec.)

CELP vocoder at 16 kbit/s), G.729 (CS-ACELP vocoder at

11.8, 8 and 6.4 kbit/s), iLBC (vocoder at 15.2 kbit/s for 20 ms

frame and 13.33 kbit/s for 30 ms frame), AMR (vocoder at

12.2, 10.2, 7.95, 7.4, 6.7, 5.9, 5.15 and 4.75 kbit/s) and Silk

(Skype’s variable bit rate audio codec).

Results are shown in Table 1. Each row illustrates the dis-

tribution of how the identification strategy classifies the 168

speech inputs when initially processed using the codec on the

left-hand side of the table. Figures in bold print indicate the

percentage of those input sequences that were correctly iden-

tified. The remainder indicate the proportions of inputs that

are misclassified.

Overall, the results are very favorable, with the majority

of the codecs being correctly identified for all 168 test inputs.

In all cases the presented scheme shows more accurate results

than those reported in [4], despite the fact that our scheme

uses approximately 4 seconds of speech, while [4] requires

about 2 minutes. Of particular note are the results for high bit

rate encoding. In the case of the G.726 (ADPCM) where our

technique achieves accuracy of 100 % at all bit rates, while

the results in [4] are 86 % at 32 kbit/s and 24 % at 40 kbit/s.

As seen in Table 1, the codec that presents room for future

improvement is Silk. We believe that the accuracy of our ap-

proach will be improved by considering the dynamic variable

bit rate operation.

4. CONCLUSION
In this paper we have presented a novel highly accurate tech-

nique for the identification from the decoded speech of the

codec used. The technique does not require access to the orig-

inal uncoded speech and is based on identifying the traces left

from the signal processing operation performed during encod-

ing and decoding. The identification scheme operates by cre-

ating a multidimentional profile that includes noise spectra

from multiple speech models and a time domain amplitude

histogram. This profile is compared against reference pro-

files from the candidate codecs. The results show that the

proposed technique is highly accurate, with 100 % correct

identification for most of the candidate codecs, which repre-

sent a diverse set including waveform codecs, vocodecs and

low and high coding bit rate operation. Furthermore, the ac-

curate performance is achieved when using input speech se-

quences with much shorter duration than previously reported

techniques. The proposed technique outperforms previously

reported techniques, specially for high source coding rate.
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