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ABSTRACT

In this work, we consider a classification problem of 14 phys-

ical activities using a body sensor network (BSN) consisting

of 14 tri-axial accelerometers. We use a tree-based classifier,

and develop a feature selection algorithm based on mutual in-

formation to find the relevant features at every internal node

of the tree. We evaluate our algorithm on 31 features per ac-

celerometer (total of 434), and we present the results on 8

subjects with a 96% average accuracy.

Index Terms— Activity Classification, Feature Selection,

Accelerometers.

1. INTRODUCTION

Human activity recognition is central to many fields such as

neurological rehabilitation [1], context-aware computing, and

athletic training [2]. For example, in neurological rehabili-

tation, doctors are interested in monitoring their stroke pa-

tients’ activities at home and in the community. Traditional

methods of motion monitoring are based on tedious manual

techniques such as self-monitoring or constant monitoring by

an observer. These techniques are prone to error due to forget-

fulness and other kinds of misreporting. Recent advances in

low-power and compact sensor technology made the automa-

tion of activity monitoring, using a body sensor network, fea-

sible and low cost. In [3], multi-modal sensor systems were

used to classify basic physical activities, including walking,

jogging, and going up and down stairs. In [4] and [5], sen-

sor systems using only accelerometers were used for activity

classification; [4] used biaxial accelerometers to monitor both

ambulatory and sedentary motions, while [5] used tri-axial ac-

celerometers to monitor workspace activities. Smart phone-

based accelerometers were also used for activity recognition

as in [6]. A representative sampling of previous research is

presented in Table 1.

In our work, we aim at capturing the motions of all the

parts of the body for a thorough study of the activity recog-

nition problem. We over-instrument the subjects with 14
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Ref. No. Activities No. Sensors No. Subjects Accuracy
[4] 20 5 20 84%

[6] 5 1 10 85%

[7] 5 groups 6 11 N/A

[8] 5 2 5 89 %

[9] 8 7 12 90%

[10] 8 12 1 65% - 95%

[11] 8 1 7 95%

[3] 10 7 2 95%

Ours 14 14 8 96 %

Table 1. Summary of previous research

tri-axial accelerometers placed on various parts of the body,

and we consider the classification of 14 common daily activi-

ties. We take a supervised learning approach, using a binary

decision-tree with a naı̈ve Bayes classifier at every internal

node and a large feature set of 31 features per accelerometer

(total of 434 features). This is a high-dimensional problem

where brute force is not possible, and a feature selection al-

gorithm is needed to find the best features for every naı̈ve

Bayes classifier (present at every internal node). Feature se-

lection is a problem that has been studied many times before

in other contexts. Different types include margin-based algo-

rithms such as RELIEF [12] and mutual information-based

algorithms such as MIFS [13]. We use a mutual information-

based algorithm because it is computationally capable of han-

dling the large amount of data captured by 14 accelerometers.

Our contribution is that we describe an activity classification

system that can handle a large set of activities (14 activities)

representative of the common daily activities, and achieves a

very high recognition accuracy. The system was tested on 8

different subjects.

2. METHODOLOGY

2.1. Training Data Collection

Accelerometers are placed on an individual at fourteen lo-

cations, as shown in figure 1. The accelerometers we used

were tri-axial wireless Gulf Coast Data Concept X6-2mini ac-

celerometers (± 6g) [14], which continually collected data at

a rate of 160Hz. Fourteen different activities are performed,
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Fig. 1. Location of the 14 accelerometers

as described in table 2. To collect labels for ground truth,

we used an Android phone application. The application has

a list of the activities to choose from and a start/stop button

to record the time the subject started the activity, and the time

he/she stopped. Eight different data sets were collected from

eight different healthy individuals for a length of five minutes

per activity.

Active Stationary
Slow walk Stand

Fast walk Sit (upright)

Walk (up-slope) Sit(hunch)

Walk (down-slope) Sit (slouch)

Walk (up stairs) Lie down (on back)

Walk (down stairs) Lie down (on stomach)

Run Lie down (on side)

Table 2. The 14 activities that were classified

2.2. Features Computation

Features were computed on 4 second windows of acceler-

ation data with 3 second overlapping between consecutive

windows. We compute 31 different features for each sensor,

shown in table 3. Since we used 14 different sensors, this

meant a total of 434 features from which to choose.

2.3. Classification

We used the binary decision tree shown in figure 2, with a

naı̈ve Bayes classifier at each node. The naı̈ve Bayes classifier

is a probabilistic method given by the function (1), where C is

the set of classes and F is the set of features.

maxC∈C{p(C)
∏

f∈F
p(f |C)} (1)

Features
Standard deviation of x,y,z axes and m

Mean of x,y,z axes and m
Absolute mean of x,y,z axes and m

Energy ratio of x,y,z axes and m
Ratio of DC to sidelobe of x,y,z axes

First sidelobe location of x,y,z axes

Max value of x,y,z axes and m
Short time energy in x,y,z axes and m

Correlation between x and y axes

Table 3. Features used. (m refers to the magnitude of the 3D

acceleration vector.)

Fig. 2. Decision tree used.

This classification was performed offline. A tree was used so

that the classifier would not have to distinguish between all

14 of the classes using the same set of features. Instead, clas-

sifiers are used to partition the data into smaller and smaller

categories of classes until the categories consist of a single

class, at which point the data is fully classified. In the prob-

ability calculations (given by Bayes’ rule), the features were

assumed to be independent with a Gaussian distribution, as

required by the naı̈ve Bayes classifier. For every subject,

the naı̈ve Bayes classifiers (at the internal nodes of the tree)

were trained on his/her training data; this is often called user-

dependent procedure. The feature selection was also person-

alized to every subject.

2.4. Feature Selection Algorithm

The high-dimensionality of the problem requires a good fea-

ture selection algorithm to find the best features for the naı̈ve

Bayes classifier at every internal node. In order to minimize

computational complexity while maximizing accuracy, this

algorithm employs a ’filter’ solution first, and then a ’wrap-

per.’ The algorithm works as follows:

1. We determine the Gaussianity of each feature by calcu-

lating the negentropy of each feature given each class

using the approximation given in equation (2), where J
is the negentropy, x is a random variable, E is the ex-

pected value, and kurt is the kurtosis, the fourth central

1730



moment of the distribution [15] [16].

J(x) ≈ 1

12
E{x3}2 + 1

48
kurt(x)2 (2)

We remove all features with negentropy values that are

higher than an apriori threshhold.

2. Using the mRMR algorithm, we ranked the features.

[17] The term this algorithm wishes to maximize is

given by formula (3).

I(C; fi)− 1

|S|
∑

fs∈S

I(fs; fi) (3)

I is the mutual information, C is the class variable, fi
is the feature under consideration, and S is the set of

features already selected and ranked. Calculating mu-

tual information requires calculating the entropy of a

feature or set of features, a computationally expensive

process because each feature is a mixture of Gaussians.

Hence a Taylor series approximation of the entropy was

employed [18].

3. By now, there are a few parameters that can be changed:

the threshhold for the negentropy values and the de-

gree of the Taylor series approximation. In addition,

there are really two different possible algorithms, us-

ing only the first term of (3) (Max-Relevance), or both

(Max-Relevance and Min-Redundancy) [17]. Instead

of choosing one algorithm, or just one set of param-

eters, a range of parameters are used over both algo-

rithms, and the sets of features returned by these algo-

rithms are captured. Because we wish to minimize the

number of features, we use the first k features in each

ranking, where k ranges from 1 to the full set.

4. This gives us a list of feature sets. We pick the feature

set that minimizes the training error1.

5. The above steps are repeated for each node in the tree.

Then for each node, the highest ranking set of features

are chosen, and the total number of sensors used so far

is updated.

3. RESULTS

We collected sets of data from eight different individuals

where the participant did five minutes of each of the 14 activ-

ities while wearing all 14 accelerometers. For every subject,

we build a personalized classifier; we train on half of the data

(2.5 minutes per activity) and tested on the other half, a time

suggested by [5]. We got an average overall accuracy of

1This corresponds to choosing the feature set that gives the highest dis-

crimination between the two branches of the tree at the corresponding node.

Training error is the percentage of misclassified training data

Activity Percent Correct
Run 100%

Walk (up stairs) 97.67 %

Walk (down stairs) 94.54 %

Slow Walk 92.77 %

Walk (up-slope) 95.95 %

Fast Walk 96.81 %

Walk (down-slope) 95.32 %

Stand 99.41 %

Sit (upright) 89.90 %

Sit (slouch) 94.62 %

Sit (hunch) 99.24 %

Lie down (on side) 100 %

Lie down (on back) 94.83 %

Lie down (on stomach) 99.66 %

Table 4. Average accuracy for each of the activities.

Subject Random Features Our algorithm No. of Sensors
1 51 % 93 % 10

2 64 % 98 % 12

3 71 % 96 % 9

4 86 % 97 % 10

5 70 % 98 % 12

6 83 % 99 % 10

7 83 % 96 % 13

8 74 % 95 % 11

Average 72.75 % 96.5 % 10.875

Table 5. Average accuracy for each of the test subjects. We

compare our algorithm to an algorithm that selects 14 random

features at every internal node. The last column shows the

number of sensors used by our algorithm.

96.5%, as seen in Table 5. Table 5 also shows a comparison

between our algorithm and a random selection of features

(14 features) at every internal node of the decision tree. Our

algorithm clearly outperforms the random selection of fea-

tures. The number of features (14 features) was selected just

for comparison reasons. Table 5 shows that a large number

of sensors was used by our algorithm for every subject. This

is due to the fact that the feature selection algorithm does

not take into consideration from which sensor the features

were selected. It would be interesting to change the feature

selection algorithm to a sensor selection algorithm, while

maintaining a relatively high accuracy. This could be done by

adding a term to favor features from the same sensors. It is

also worth noting that for different subjects, different features

were selected. This is due to the variation in the acceleration

data belonging to different subjects (e.g. different subjects

walk differently, sit differently, and lie differently.).

4. CONCLUSION

This work presents a combination of a tree-based classifi-

cation and a feature selection algorithm for human activity
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recognition, and shows that a high activity recognition rate

is achievable for a large set of common daily activities. More

than just a specific algorithm, this paper presents a framework

that maximizes the accuracy that can be garnered from the re-

sults of specific algorithms, like the mRMR algorithm that we

used. This work shows that different sensors (at different lo-

cations on the body) are the best for discriminating between

subsets of the activities. The algorithm presented could be

changed to minimize for the number of sensor used. This is a

step forward towards understanding human activities and to-

wards finding the best placements of sensors on the body for

the recognition of a large set of activities.
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