
 FIXED-POINT SQUARE ROOTS

Abhishek Seth1, Woon-Seng Gan2

Digital Signal Processing Lab, School of Electrical and Electronic Engineering,
Nanyang Technological University, SINGAPORE
Email: 1aseth@ntu.edu.sg, 2ewsgan@ntu.edu.sg.

ABSTRACT

Square root (SQRT) is a common arithmetic operation used
in many DSP algorithms. In this paper, we evaluate square
rooting methods suitable for implementation on fixed-point
(FxP) DSP processors with a fast multiplying unit. The
finite wordlength effect on the square rooting methods is
highlighted, and it is shown that the theoretically derived
convergence rate for the Newton-Raphson (NR) based
square rooting methods are not suitable for FxP processor.
Also, the most efficient methods for 8-bit and 16-bit FxP
processors are identified.
Index Terms—Fixed-point, square root, bit precision, DSP.

1. INTRODUCTION

Square root (SQRT) computation is used in applications,
like spectrum analysis, audio signal processing, digital
communication, 3D graphics, and many others. A number of
methods to find the SQRT of a number are described in [1].
Based on their structures, some of them are more suitable
for hardware implementation, while others are more suited
for software implementation on digital signal processing
(DSP) processors with a hardware multiplier. In this paper,
we will investigate several square rooting methods suitable
for fixed-point (FxP) processors with a fast multiplying unit.

2. SQUARE ROOTING METHODS

There are several square rooting methods described in [1].
They can be broadly classified as (a) direct methods, (b)
normalization techniques, (c) approximation by real
functions, and (d) algorithms based on Newton-Raphson
(NR) formula. Direct methods and normalization techniques
are more suitable for hardware implementation, whereas
approximation by real functions [2] and NR based
algorithms [3] are usually programmed on processors with a
fast multiplying unit. As many FxP processors, including
DSPs and FPGAs, support fast multiplying unit, we shall
investigate performance of (c) and (d) on FxP processors in
this paper.

2.1. APPROXIMATION BY REAL FUNCTIONS

The two most popularly used functions for SQRT
approximations are Taylor’s series approximation (TSA)
and Chebyshev polynomial approximation (CPA). The
infinite length Taylor’s series expansion for SQRT is

expressed as
2 11 1 1 3...(2 3)1 1 ... (1) ... ,

2 8 2 4...2
n nn

t t t t
n

1 3 (2 3)31 1 21 ... (1) ... ,1 1 2

2 8 2
()()1 ... (1)1 ... (1)2 11 11 111 3)(2 n..(2 3)..(2 3)()()33.3.

4...2n4 2
(1)

and it is valid for |t|<1. A general nth order Chebyshev
expansion [2] can be derived from (1) by substituting with
Chebyshev polynomials.

2.2. APPROXIMATION BY NEWTON-RAPHSON
FORMULA

NR formula is used to calculate the SQRT of a number in an
iterative manner. The three variants of NR method used to
calculate square root of a number are (a) direct Newton-
Raphson variant 1 (DNR-1), (b) direct Newton-Raphson
variant 2 (DNR-2), and (c) inverse Newton-Raphson (INR).
These variants are well studied methods [3], [4] and are
described in the following sections. For the present
discussion of NR based methods, we will use the following
notations: SQRT(x)= x and ISQRT(x)/2=1 2 .x

A. Direct Newton-Raphson variant 1

DNR-1 is an iterative method [3] to compute SQRT of a
number and is given by the following equation

 2
1 2 , 0,1...,k k ky y x y x kk11

2 0,1...,ky x y x k2 2 ,,kkyk (2)

where yk+1 is the estimated value of SQRT(x) obtained after
(k+1) iterations. Each iteration of DNR-1 requires 2
multiplications and 2 additions.

B. Direct Newton-Raphson variant 2

The DNR-2 [3] is the second variant and is given by

1
1 1 2 1 , 0,1...,

k k k k
x x x x k

1 k
1 21 0 1k1 0 11

k k
, 0,1...,

k k
,,1 0 11

(3)
and

1 1

1 1 , 0,1....
2k k k

x x x x k
21 2
11
22

0 1x k1 0 1x x 1
1k k

0,1....x x 1 ,,
1

1 , 0,1....
k k

x x 1 ,, 0 1x x 1 (4)

Each iteration of DNR-2 requires 3 multiplications and 2
additions to calculate

1k
x

1
from ,

k
x

and 1

k
x

using (3) and (4). Each iteration enhances the approximation
of both SQRT(x) and ISQRT(x). The improved
approximations of SQRT(x) and ISQRT(x) are used in the
next iteration.

1725978-1-4673-0046-9/12/$26.00 ©2012 IEEE ICASSP 2012

Table 1 Initializing strategies for DNR-1, DNR-2 and INR methods to calculate FxP square roots.
NR

variant
Initialization strategy Method name Remarks & References

SQRT(x) ISQRT(x)

DNR-1
PE LUT NLIIRF [4]

LUT LUT DNRT(n) [5]
PE PE DNR-1(PE,PE) The output BP of DNR-1(LUT,PE) is very low, and is not

evaluated. DNR-1(PE,PE) is evaluated in this paper.
DNR-2 PE PE DNR-2(PE,PE) The output BP of DNR-2(PE,PE) is very low as compared to

DNR-1 methods. The other (remaining 3) initializing strategies
for DNR-2 are, therefore, not evaluated.

INR PE PE INR(PE) The output BP of INR(PE) is more than the DNR-2(PE,PE) but
less than the DNR-1 methods. Therefore, the initializing

strategy using LUT is not evaluated.

C. Inverse Newton-Raphson

The INR [3] method is the third variant and is given by
2

1

11 1 3 1 , 0,1...,
2k k k

x x x x k
21 2

21
k

1 11
22

2
0 1k3 1 0 13 1 0 13 1

kk
, 0,1...,3

k
,3 1 (5)

Each iteration of INR requires 3 multiplications and 1
addition to calculate

1
1

k
x

1

from 1 .

k
x

After (k+1)

iterations, SQRT(x) is obtained by an additional
multiplication, 1 .

k k
x x x .

k
The initial approximation for SQRT(x) and ISQRT(x)

can be performed using polynomial expansions (PEs) or
look-up tables (LUTs). While using PEs, we restrict
ourselves to the 3rd order polynomials for both SQRT(x) and
ISQRT(x) initialization i.e., linear PE (LPE), quadratic PE
(QPE) and cubic PE (CPE) are used for SQRT(x) and
ISQRT(x) initialization. For example, DNR-1 using LPE for
both SQRT(x) and ISQRT(x) initialization is abbreviated as
DNR-1(L,L). Among several initialization strategies
possible, few strategies are explored previously in [4] and
[5] for FxP square roots. In this work, we explore all
possible initialization strategies for (FxP) DNR-1, DNR-2
and INR (listed in Table 1) to select the best method and the
initializing strategy. We start with a comparison of the
theoretical convergence rates of DNR-1, DNR-2 and INR in
the next section.

3. CONVERGENCE OF NEWTON-RAPHSON BASED
METHODS

Past works [3], [4] have reported the convergence rates of
DNR-1, DNR-2 and INR methods. DNR-1 has the property
of linear convergence, while the DNR-2 method has the
property of convergence rate that lie between linear and
quadratic. In addition, the INR method has the property of
quadratic convergence. We simulated DNR-1, DNR-2 and
INR on MATLAB using double precision (DP) floating-
point (FlP) arithmetic for an interval of 0.25≤x<1. LPEs are
used for the SQRT(x) and ISQRT(x) initialization. We
compare the output accuracy of INR, DNR-1 and DNR-2
against the MATLAB’s DP FlP SQRT algorithm, which

serves as our golden reference. Denoting the DP FlP result
of the MATLAB SQRT algorithm by yDP FlP

and DP FlP
results of NR based methods after kth iteration by yk,DP FlP, bit
precision (BP) of output sample is calculated as

Bit precision of yk,DP FlP = log2| yDP FlP yk,DP FlP |. (6)
Total number of multiplications (BM) and additions (BA)
required to generate 100% of the output samples with BP>N
(5<N<51) bits are plotted in Fig. 1. The computational plots
in Fig. 1 are in close agreement with the theoretical
convergence rates of the NR variant algorithms [3]. Among
the three methods, the INR method has the fastest
convergence and requires minimum number of additions
and multiplications for large values of N (N>8). The DNR-2
method has convergence rate that lie in between DNR-1 and
INR, and DNR-1 has the slowest convergence rate. Note
that DNR-1 requires the least number of operations
(multiplications and additions) for small values of N (N≤8).
Similar trends are observed when other combinations of PEs
are used for SQRT(x) and ISQRT(x) initialization. For an N-
bit FxP processor, it would be useful to find out what
percentage of output samples has BP>N−1. As DNR-1
requires minimum operations to achieve BP≤8 for all the
output samples, it should be the preferred method for
implementation on an 8-bit FxP DSP processor. Similarly,
INR should be the preferred method for implementation on
16-bit or higher bits FxP DSP processors. In the next
section, we shall investigate the performance of FxP square
rooting methods on 8-bit and 16-bit FxP processors.

4. FIXED-POINT SQUARE ROOTS

The results for FxP DNR-1 using LPE and LUT to initialize
SQRT(x) and ISQRT(x)/2, respectively have been reported
in [4]. The authors called this method NLIIRF method, and
evaluated it on a 16-bit FxP DSP processor. In [5], DNR-1
uses LUTs for both SQRT(x) and ISQRT(x)/2 initialization,
and is named DNRT(n) where ‘n’ is the number of
multiplications used by the DNRT(n) method. A generalized
block diagram of the DNRT(n) method is shown in Fig. 2. It
represents DNRT(n) as a cascade of a non-repetitive and
repetitive structures, where the non-repetitive structure
(NRS) performs the first iteration and the repetitive structure

1726

6 10 14 18 22 26 30 34 38 42 46 50
0

10

20

30

40

50

60

70

N (bits)

B
M

 +
 B

A

DNR-1
DNR-2
INR

Figure 1 Total number of multiplications and additions

required by DNR-1, DNR-2 and INR to generate 100% of
the output samples with BP>N (5<N<51).

(RS) performs the subsequent iterations. The NRS can
operate alone (i.e. no RS), or combines with one or more
RS(s). The number of RSs used for DNRT(n) method are
denoted by BRS, and is shown in Table 2. Depending on the
number of RSs used, ‘n’ takes up odd values (1,3,5 etc.).
DNRT(2) is a special case of DNRT(n), and is shown in Fig.
2. In our work, we use DNRT(1) for an 8-bit FxP processor;
and any one of the DNRT(1), DNRT(2) or DNRT(3) for a 16-
bit FxP processor. The S values used by DNRT(1), DNRT(2)
or DNRT(3) for S-bit truncation are listed in Table 2. To
increase computational BP, enhanced precision (EP) LUTs
are used [5]. The bit-widths of EP SQRT(x) and ISQRT(x)/2
LUT are denoted by BWSQRT and BWISQRT/2, respectively,
and shown in Table 2. Table 2 also shows the number of
multiplications (BM), additions (BA), and memory bytes
required by DNRT(n) for 8-bit and 16-bit FxP DSP
processors. We use the specifications shown in Table 2 to
generate the results for 8-bit and 16-bit FxP processors.

The square rooting methods described previously,
namely TSA, CPA, NLIIRF, DNRT(n), DNR-1(PE,PE),
DNR-2(PE,PE) and INR(PE), are simulated on 8-bit and 16-
bit FxP processors using the MATLAB FxP toolbox [6].
We compare the accuracy of the FxP SQRT algorithm
against our golden reference (MATLAB’s DP FlP SQRT
algorithm). Denoting the MATLAB’s DP FlP result by yDP

FlP,

and N-bit rounded result after kth iteration (or kth order)

by yk,N, BP of FxP output sample is calculated as
Bit precision of yk,N = log2| yDP FlP yk,N |. (7)

Table 3 shows the percentage of output samples with BP>N
1 for N = 8 and 16. To compare the performance of

various square rooting methods, number of iterations/order
(BI), additions, multiplications and total memory size
required by each square rooting method are also calculated.
The last column of Table 3 shows the (maximum)
percentage of output samples with BP>N−1, and there is no
further improvement in the percentage values even after
increasing the number of iterations (or polynomial order). It
is expected that the BP increases with increases in order (for
real function based methods) or number of iterations (for
NR based methods), but simulation results show that the
output BP saturates and does not improve after certain order

y2,N

xN

xN +
-

1
2 Lx

1
2

LxLx

1
2 Lx

1
2

y1,N

Repetitive
structure (RS-1)

Non-repetitive
structure (NRS)

e

EP ISQRT(x)/2
LUT & Decoder

EP SQRT(x) LUT
& Decoder

LL
L-bit

truncation
error

X

+

X

+

X

+

1
2 Lx

1
2

LxLx

DNRT(1)

DNRT(2)

DNRT(3)

11 + X +X y3,N

+
-

Figure 2 DNRT(n) as a cascade of repetitive and non-

repetitive structures.

or iterations. This is due to the finite wordlength effect.
Finite wordlength arithmetic also affects the convergence
rates of NR based methods. According to theoretical
convergence rates, DNR-1 method should produce the best
results for 8-bit FxP processor followed by DNR-2 and INR
methods. But due to finite wordlength effect, the output BP
of DNR-2 and INR saturates after certain iterations. For 16-
bit FxP processor, the INR method should produce the best
result followed by DNR-2 and DNR-1 methods. But FxP
simulation results show that DNR-1(PE,PE), DNRT(n) and
NLIIRF methods perform better than INR and DNR-2
methods. Similar results are obtained for higher values of N
(>16). This shows that DNR-1, DNRT(n) and NLIIRF
methods are less sensitive to finite wordlength effect. In
general, it can be said that for FxP processors, the DNR-
1(PE,PE), DNRT(n) and NLIIRF methods generate the best
results followed by INR(PE), DNR-2(PE,PE), TSA, and
CPA.

The computational workload and BP results of Table 3
are useful in selecting appropriate square rooting method for
FxP processor of the given wordlength. For an 8-bit FxP
DSP processor, DNRT(1) is the most suitable square rooting
method as it provides maximum (100%) BP with minimum
memory and computational workload. For a 16-bit FxP
processor, DNRT(1), NLIIRF, DNR-1(L,C) and DNR-
1(Q,Q) provide the maximum (100%) output bit accuracy.
In general, DNR-1(PE,PE), DNRT(n) and NLIIRF are
highly precise square rooting methods. But they differ in the
memory and computational workload requirements.
Compared to other algorithms, DNRT(n) trades
computational workload with memory without
compromising its output BP. In contrast, DNR-1(PE,PE)
and NLIIRF are computationally more expensive but require
fewer memory. We, therefore, derive a set of highly precise
FxP square rooting methods suitable for various
implementation requirements. The next section examines
the real-time implementation of the DNRT(n) methods.

1727

Table 2 DNRT(n) with EP LUTs for 8-bit, and 16-bit
FxP processors.

N BRS, BWSQRT,
BWISQRT/2

DNRT(n) S BM, BA,
Memory (Bytes)

8 0, 8, 8 DNRT(1) 4 1, 3, 12

16
0, 16, 8 DNRT(1) 8 1, 3, 288
0, 16, 8 DNRT(2) 7 2, 4, 144
1, 16, 8 DNRT(3) 6 3, 5, 72

5. REAL-TIME IMPLEMENTATION

The TMS320VC5505 [7], which is a 16-bit FxP processor
from Texas Instruments (TI), is used for the real-time
implementation of DNRT(1), DNRT(2) and DNRT(3). This
processor provides DSP library to compute SQRT of a 16-
bit FxP number [8], which is referred here as the DSPLIB
SQRT. We evaluate the performance of the DSPLIB SQRT
and compare it against the DNRT(n) based algorithms, in
terms of BP and computational workload performance. The
MIPS and memory results for DNRT(1), DNRT(2), DNRT(3)
and DSPLIB SQRT are shown in Table 4. The MIPS results
are obtained for the sampling frequency of 48 kHz. On-chip
memory usage is the summation of the code size and data
size for the respective DNRT(n) implementation. For
DSPLIB SQRT, only 66.93% of output samples has BP>15,
while this value is more than 99.66% for the DNRT(n)
algorithms. In terms of MIPS requirement, DNRT(1) has the
least computational load among the 4 algorithms, while the
rest of the evaluated algorithms (Table 4) have comparable
MIPS performance. However, memory requirement for
DNRT(n) algorithms is significantly more than the DSPLIB
SQRT algorithm. This is due to the fact that DNRT(n)

Table 3 Performance comparison of square rooting methods
on 8-bit and 16-bit FxP processors.

N Method BI, BM, BA,
BM+BA

Memory
(Bytes)

BP (%)

8

DNRT(1) 1,1,3,4 12 100
NLIIRF 1,3,5.8 14 100

DNR-1(C,L) 1,8,6,14 6 100
TSA 6,9,5,14 6 91.75

INR(C) 2,12,5,17 4 76.04
CPA 6,9,5,14 6 65.98

DNR-2(L,Q) 1,7,5,12 5 53.13

16

DNRT(1) 1,1,3,4 288 100
NLIIRF 3,7,9,16 28 100

DNR-1(L,C) 2,10,8,18 12 100
DNR-1(Q,Q) 2,10,8,18 12 100

DNRT(3) 2,3,5,8 72 99.98
DNRT(2) 1,2,4,6 144 99.67
INR(Q) 4,16,6,22 6 85.07

DNR-2(L,Q) 4,16,11,25 10 49.63
TSA 6,9,5,14 12 40.48
CPA 6,9,5,14 12 1.91

BP (%) – percentage of output samples with BP>N−1.

Table 4 Real-time implementation of DNRT(1),
DNRT(2) and DNRT(3) on TMS320VC5505.

DNRT(n) BP (%) MIPS On-chip memory
(Bytes)

DSPLIB SQRT 66.93 2.35 120
DNRT(1) 100 1.54 1,140
DNRT(2) 99.67 2.21 840
DNRT(3) 99.98 2.88 530

algorithms are coded in C, without optimized for memory.
However, the BP gain can significantly outweigh the
increase in on-chip memory required.

6. CONCLUSION

In this paper, we presented a number of square rooting
methods suitable for FxP platforms with a fast multiplying
unit. The square rooting algorithms were simulated, and
their BP and computational workload performances were
compared for 8-bit and 16-bit FxP processors. The finite
wordlength effect on each method was highlighted. The
DNRT(n) algorithms outperformed all square rooting
methods in terms of BP and computational workload
performance for 8-bit and 16-bit FxP processors. In
particularly, DNRT(1), DNRT(2) and DNRT(3) algorithms
were implemented on the TI C55x DSP processor to
validate their performances.

7. ACKNOWLEDGEMENT
This work is supported by the Singapore Ministry of

Education Academic Research Fund Tier 2, under research
grant MOE2010-T2-2-040.

8. REFERENCES

 [1] P. Montuschi, and M. Mezzalama, “Survey of square
rooting algorithms,” IEE Proceedings, vol. 137, pp. 31-
40, 1990.

[2] C. Clenshaw, “Polynomial approximations to
elementary functions,” Mathematical Tables Aids
Computation, 1954.

[3] C. Ramamoorthy, J. Goodman, and K. Kim, “Some
properties of iterative square rooting methods using
high-speed multiplication,” IEEE Transactions on
Computers, vol. 21, pp. 837-847, 1972.

[4] N. Mikami, M. Kobayashi, and Y. Yokoyama, “A new
DSP-oriented algorithm for calculation of square root
using a nonlinear digital filter,” IEEE Transactions on
Signal Processing, vol. 40, pp. 1663-1669, 1992.

[5] A. Seth, and W. S. Gan, “Fixed-point square roots using
L-bit truncation,” to be published in IEEE Signal
Processing Magazine, vol. 28, issue 6, 2011. [Online
Available]: http://www3.ntu.edu.sg/home/aseth.

[6] MATLAB. Fixed-Point Toolbox. [Online]. Available:
http://www.mathworks.com/help/toolbox/fixedpoint.

[7] TMS320VC5505 Fixed-Point Digital Signal Processor,
SPRS503B, 2010.

[8] TMS320C55x DSP Library Programmer’s Reference.
SPRU422J, 2000.

1728

