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ABSTRACT 

Square root (SQRT) is a common arithmetic operation used 
in many DSP algorithms. In this paper, we evaluate square 
rooting methods suitable for implementation on fixed-point 
(FxP) DSP processors with a fast multiplying unit. The 
finite wordlength effect on the square rooting methods is 
highlighted, and it is shown that the theoretically derived 
convergence rate for the Newton-Raphson (NR) based 
square rooting methods are not suitable for FxP processor. 
Also, the most efficient methods for 8-bit and 16-bit FxP 
processors are identified.  
Index Terms—Fixed-point, square root, bit precision, DSP.   

1. INTRODUCTION 

Square root (SQRT) computation is used in applications, 
like spectrum analysis, audio signal processing, digital 
communication, 3D graphics, and many others. A number of 
methods to find the SQRT of a number are described in [1]. 
Based on their structures, some of them are more suitable 
for hardware implementation, while others are more suited 
for software implementation on digital signal processing 
(DSP) processors with a hardware multiplier. In this paper, 
we will investigate several square rooting methods suitable 
for fixed-point (FxP) processors with a fast multiplying unit. 

2. SQUARE ROOTING METHODS 

There are several square rooting methods described in [1]. 
They can be broadly classified as (a) direct methods, (b) 
normalization techniques, (c) approximation by real 
functions, and (d) algorithms based on Newton-Raphson 
(NR) formula. Direct methods and normalization techniques 
are more suitable for hardware implementation, whereas 
approximation by real functions [2] and NR based 
algorithms [3] are usually programmed on processors with a 
fast multiplying unit. As many FxP processors, including 
DSPs and FPGAs, support fast multiplying unit, we shall 
investigate performance of (c) and (d) on FxP processors in 
this paper.  

2.1. APPROXIMATION BY REAL FUNCTIONS 

The two most popularly used functions for SQRT 
approximations are Taylor’s series approximation (TSA) 
and Chebyshev polynomial approximation (CPA). The 
infinite length Taylor’s series expansion for SQRT is 

expressed as 
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and it is valid for |t|<1. A general nth order Chebyshev 
expansion [2] can be derived from (1) by substituting with 
Chebyshev polynomials.  

2.2. APPROXIMATION BY NEWTON-RAPHSON 
FORMULA 

NR formula is used to calculate the SQRT of a number in an 
iterative manner. The three variants of NR method used to 
calculate square root of a number are (a) direct Newton-
Raphson variant 1 (DNR-1), (b) direct Newton-Raphson 
variant 2 (DNR-2), and (c) inverse Newton-Raphson (INR). 
These variants are well studied methods [3], [4] and are 
described in the following sections. For the present 
discussion of NR based methods, we will use the following 
notations: SQRT(x)= x  and ISQRT(x)/2=1 2 .x       

A. Direct Newton-Raphson variant 1 

DNR-1 is an iterative method [3] to compute SQRT of a 
number and is given by the following equation 
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where yk+1 is the estimated value of SQRT(x) obtained after 
(k+1) iterations. Each iteration of DNR-1 requires 2 
multiplications and 2 additions.  

B. Direct Newton-Raphson variant 2 

The DNR-2 [3] is the second variant and is given by 
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Each iteration of DNR-2 requires 3 multiplications and 2 
additions to calculate 
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using (3) and (4). Each iteration enhances the approximation 
of both SQRT(x) and ISQRT(x). The improved 
approximations of SQRT(x) and ISQRT(x) are used in the 
next iteration. 
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Table 1 Initializing strategies for DNR-1, DNR-2 and INR methods to calculate FxP square roots. 
NR 

variant 
Initialization strategy Method name Remarks & References 

SQRT(x) ISQRT(x) 
 

DNR-1 
PE LUT NLIIRF [4] 

LUT LUT DNRT(n) [5] 
PE PE DNR-1(PE,PE) The output BP of DNR-1(LUT,PE) is very low, and is not 

evaluated. DNR-1(PE,PE) is evaluated in this paper. 
DNR-2 PE PE DNR-2(PE,PE) The output BP of DNR-2(PE,PE) is very low as compared to 

DNR-1 methods. The other (remaining 3) initializing strategies 
for DNR-2 are, therefore, not evaluated. 

INR PE PE INR(PE) The output BP of INR(PE) is more than the DNR-2(PE,PE) but 
less than the DNR-1 methods. Therefore, the initializing 

strategy using LUT is not evaluated. 

C. Inverse Newton-Raphson 

The INR [3] method is the third variant and is given by 
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Each iteration of INR requires 3 multiplications and 1 
addition to calculate 
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After (k+1) 

iterations, SQRT(x) is obtained by an additional 
multiplication, 1 .

k k
x x x .

k  
The initial approximation for SQRT(x) and ISQRT(x) 

can be performed using polynomial expansions (PEs) or 
look-up tables (LUTs). While using PEs, we restrict 
ourselves to the 3rd order polynomials for both SQRT(x) and 
ISQRT(x) initialization i.e., linear PE (LPE), quadratic PE 
(QPE) and cubic PE (CPE) are used for SQRT(x) and 
ISQRT(x) initialization. For example, DNR-1 using LPE for 
both SQRT(x) and ISQRT(x) initialization is abbreviated as 
DNR-1(L,L). Among several initialization strategies 
possible, few strategies are explored previously in [4] and 
[5] for FxP square roots. In this work, we explore all 
possible initialization strategies for (FxP) DNR-1, DNR-2 
and INR (listed in Table 1) to select the best method and the 
initializing strategy. We start with a comparison of the 
theoretical convergence rates of DNR-1, DNR-2 and INR in 
the next section.   

3. CONVERGENCE OF NEWTON-RAPHSON BASED 
METHODS 

Past works [3], [4] have reported the convergence rates of 
DNR-1, DNR-2 and INR methods. DNR-1 has the property 
of linear convergence, while the DNR-2 method has the 
property of convergence rate that lie between linear and 
quadratic. In addition, the INR method has the property of 
quadratic convergence. We simulated DNR-1, DNR-2 and 
INR on MATLAB using double precision (DP) floating-
point (FlP) arithmetic for an interval of 0.25≤x<1. LPEs are 
used for the SQRT(x) and ISQRT(x) initialization. We 
compare the output accuracy of INR, DNR-1 and DNR-2 
against the MATLAB’s DP FlP SQRT algorithm, which  

serves as our golden reference. Denoting the DP FlP result 
of the MATLAB SQRT algorithm by yDP FlP 

and DP FlP 
results of NR based methods after kth iteration by yk,DP FlP, bit 
precision (BP) of output sample is calculated as   

Bit precision of yk,DP FlP = log2| yDP FlP  yk,DP FlP |.     (6) 
Total number of multiplications (BM) and additions (BA) 
required to generate 100% of the output samples with BP>N 
(5<N<51) bits are plotted in Fig. 1. The computational plots 
in Fig. 1 are in close agreement with the theoretical 
convergence rates of the NR variant algorithms [3]. Among 
the three methods, the INR method has the fastest 
convergence and requires minimum number of additions 
and multiplications for large values of N (N>8). The DNR-2 
method has convergence rate that lie in between DNR-1 and 
INR, and DNR-1 has the slowest convergence rate. Note 
that DNR-1 requires the least number of operations 
(multiplications and additions) for small values of N (N≤8). 
Similar trends are observed when other combinations of PEs 
are used for SQRT(x) and ISQRT(x) initialization. For an N-
bit FxP processor, it would be useful to find out what 
percentage of output samples has BP>N−1. As DNR-1 
requires minimum operations to achieve BP≤8 for all the 
output samples, it should be the preferred method for 
implementation on an 8-bit FxP DSP processor. Similarly, 
INR should be the preferred method for implementation on 
16-bit or higher bits FxP DSP processors. In the next 
section, we shall investigate the performance of FxP square 
rooting methods on 8-bit and 16-bit FxP processors. 

4. FIXED-POINT SQUARE ROOTS  

The results for FxP DNR-1 using LPE and LUT to initialize 
SQRT(x) and ISQRT(x)/2, respectively have been reported 
in [4]. The authors called this method NLIIRF method, and 
evaluated it on a 16-bit FxP DSP processor. In [5], DNR-1 
uses LUTs for both SQRT(x) and ISQRT(x)/2 initialization, 
and is named DNRT(n) where ‘n’ is the number of 
multiplications used by the DNRT(n)  method. A generalized 
block diagram of the DNRT(n) method is shown in Fig. 2. It 
represents DNRT(n) as a cascade of a non-repetitive and 
repetitive structures, where the non-repetitive structure 
(NRS) performs the first iteration and the repetitive structure 
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Figure 1 Total number of multiplications and additions 

required by DNR-1, DNR-2 and INR to generate 100% of 
the output samples with BP>N (5<N<51). 

 
(RS) performs the subsequent iterations. The NRS can 
operate alone (i.e. no RS), or combines with one or more 
RS(s). The number of RSs used for DNRT(n) method are 
denoted by BRS, and is shown in Table 2. Depending on the 
number of RSs used, ‘n’ takes up odd values (1,3,5 etc.). 
DNRT(2) is a special case of DNRT(n), and is shown in Fig. 
2. In our work, we use DNRT(1) for an 8-bit FxP processor; 
and any one of the DNRT(1), DNRT(2) or DNRT(3) for a 16-
bit FxP processor. The S values used by DNRT(1), DNRT(2) 
or DNRT(3) for S-bit truncation are listed in Table 2. To 
increase computational BP, enhanced precision (EP) LUTs 
are used [5]. The bit-widths of EP SQRT(x) and ISQRT(x)/2 
LUT are denoted by BWSQRT and BWISQRT/2, respectively, 
and shown in Table 2. Table 2 also shows the number of 
multiplications (BM), additions (BA), and memory bytes 
required by DNRT(n) for 8-bit and 16-bit FxP DSP 
processors. We use the specifications shown in Table 2 to 
generate the results for 8-bit and 16-bit FxP processors.  

The square rooting methods described previously, 
namely TSA, CPA, NLIIRF, DNRT(n), DNR-1(PE,PE), 
DNR-2(PE,PE) and INR(PE), are simulated on 8-bit and 16-
bit FxP processors using the MATLAB FxP toolbox [6].  
We compare the accuracy of the FxP SQRT algorithm 
against our golden reference (MATLAB’s DP FlP SQRT 
algorithm). Denoting the MATLAB’s DP FlP result by yDP 

FlP,
 
and N-bit rounded result after kth iteration (or kth order) 

by yk,N, BP of FxP output sample is calculated as   
Bit precision of yk,N = log2| yDP FlP  yk,N |.          (7)    

Table 3 shows the percentage of output samples with BP>N
1 for N = 8 and 16. To compare the performance of 

various square rooting methods, number of iterations/order 
(BI), additions, multiplications and total memory size 
required by each square rooting method are also calculated. 
The last column of Table 3 shows the (maximum) 
percentage of output samples with BP>N−1, and there is no 
further improvement in the percentage values even after 
increasing the number of iterations (or polynomial order). It 
is expected that the BP increases with increases in order (for 
real function based methods) or number of iterations (for 
NR based methods), but simulation results show that the 
output BP saturates and does not improve after certain order 
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Figure 2 DNRT(n) as a cascade of repetitive and non-

repetitive structures. 

or iterations. This is due to the finite wordlength effect. 
Finite wordlength arithmetic also affects the convergence 
rates of NR based methods. According to theoretical 
convergence rates, DNR-1 method should produce the best 
results for 8-bit FxP processor followed by DNR-2 and INR 
methods. But due to finite wordlength effect, the output BP 
of DNR-2 and INR saturates after certain iterations. For 16-
bit FxP processor, the INR method should produce the best 
result followed by DNR-2 and DNR-1 methods. But FxP 
simulation results show that DNR-1(PE,PE), DNRT(n) and 
NLIIRF methods perform better than INR and DNR-2 
methods. Similar results are obtained for higher values of N 
(>16). This shows that DNR-1, DNRT(n) and NLIIRF 
methods are less sensitive to finite wordlength effect. In 
general, it can be said that for FxP processors, the DNR-
1(PE,PE), DNRT(n) and NLIIRF methods generate the best 
results followed by INR(PE), DNR-2(PE,PE), TSA, and 
CPA.  

The computational workload and BP results of Table 3 
are useful in selecting appropriate square rooting method for 
FxP processor of the given wordlength. For an 8-bit FxP 
DSP processor, DNRT(1) is the most suitable square rooting 
method as it provides maximum (100%) BP with minimum 
memory and computational workload. For a 16-bit FxP 
processor, DNRT(1), NLIIRF, DNR-1(L,C) and DNR-
1(Q,Q) provide the  maximum (100%) output bit accuracy. 
In general, DNR-1(PE,PE),  DNRT(n) and NLIIRF are 
highly precise square rooting methods. But they differ in the 
memory and computational workload requirements. 
Compared to other algorithms, DNRT(n) trades 
computational workload with memory without 
compromising its output BP. In contrast, DNR-1(PE,PE) 
and NLIIRF are computationally more expensive but require 
fewer memory. We, therefore, derive a set of highly precise 
FxP square rooting methods suitable for various 
implementation requirements. The next section examines 
the real-time implementation of the DNRT(n) methods. 
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Table 2 DNRT(n) with EP LUTs for 8-bit, and 16-bit 
FxP processors. 

N BRS, BWSQRT, 
BWISQRT/2 

DNRT(n) S BM, BA, 
Memory (Bytes) 

8 0, 8, 8 DNRT(1) 4 1, 3, 12 
 

16 
0, 16, 8 DNRT(1) 8 1, 3, 288 
0, 16, 8 DNRT(2) 7 2, 4, 144 
1, 16, 8 DNRT(3) 6 3, 5, 72 

5. REAL-TIME IMPLEMENTATION 

The TMS320VC5505 [7], which is a 16-bit FxP processor 
from Texas Instruments (TI), is used for the real-time 
implementation of DNRT(1), DNRT(2) and DNRT(3). This 
processor provides DSP library to compute SQRT of a 16-
bit FxP number [8], which is referred here as the DSPLIB 
SQRT. We evaluate the performance of the DSPLIB SQRT 
and compare it against the DNRT(n) based algorithms, in 
terms of BP and computational workload performance. The 
MIPS and memory results for DNRT(1), DNRT(2), DNRT(3) 
and DSPLIB SQRT are shown in Table 4. The MIPS results 
are obtained for the sampling frequency of 48 kHz. On-chip 
memory usage is the summation of the code size and data 
size for the respective DNRT(n) implementation. For 
DSPLIB SQRT, only 66.93% of output samples has BP>15, 
while this value is more than 99.66% for the DNRT(n)  
algorithms. In terms of MIPS requirement, DNRT(1) has the 
least computational load among the 4 algorithms, while the 
rest of the evaluated algorithms (Table 4) have comparable 
MIPS performance. However, memory requirement for 
DNRT(n) algorithms is significantly more than the DSPLIB 
SQRT algorithm. This is due to the fact that DNRT(n)   

Table 3 Performance comparison of square rooting methods 
on 8-bit and 16-bit FxP processors. 

N Method BI, BM, BA, 
BM+BA 

Memory 
(Bytes)  

BP (%) 

 
 
 
8 

DNRT(1) 1,1,3,4 12 100 
NLIIRF 1,3,5.8 14 100 

DNR-1(C,L) 1,8,6,14 6 100 
TSA 6,9,5,14 6 91.75 

INR(C) 2,12,5,17 4 76.04 
CPA 6,9,5,14 6 65.98 

DNR-2(L,Q) 1,7,5,12 5 53.13 
 
 
 
 

16 

DNRT(1) 1,1,3,4 288 100 
NLIIRF 3,7,9,16 28 100 

DNR-1(L,C) 2,10,8,18 12 100 
DNR-1(Q,Q) 2,10,8,18 12 100 

DNRT(3) 2,3,5,8 72 99.98 
DNRT(2) 1,2,4,6 144 99.67 
INR(Q) 4,16,6,22 6 85.07 

DNR-2(L,Q) 4,16,11,25 10 49.63 
TSA 6,9,5,14 12 40.48 
CPA 6,9,5,14 12 1.91 

BP (%) – percentage of output samples with BP>N−1. 

Table 4 Real-time implementation of DNRT(1), 
DNRT(2) and DNRT(3) on TMS320VC5505. 

DNRT(n) BP (%) MIPS On-chip memory 
(Bytes) 

DSPLIB SQRT 66.93 2.35 120 
DNRT(1) 100 1.54 1,140 
DNRT(2) 99.67 2.21 840 
DNRT(3) 99.98 2.88 530 

algorithms are coded in C, without optimized for memory. 
However, the BP gain can significantly outweigh the 
increase in on-chip memory required.   

6. CONCLUSION 

In this paper, we presented a number of square rooting 
methods suitable for FxP platforms with a fast multiplying 
unit. The square rooting algorithms were simulated, and 
their BP and computational workload performances were 
compared for 8-bit and 16-bit FxP processors. The finite 
wordlength effect on each method was highlighted. The 
DNRT(n) algorithms outperformed all square rooting 
methods in terms of BP and computational workload 
performance for 8-bit and 16-bit FxP processors. In 
particularly, DNRT(1), DNRT(2) and DNRT(3) algorithms 
were implemented on the TI C55x DSP processor to 
validate their performances.  
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