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ABSTRACT
The use of model-based cepstral features has been shown as an ef-
fective characterization of damaged materials tested with ultrasonic
non-destructive evaluation (NDE) techniques. In this work, we fo-
cus our study on carbon-fiber reinforced polymer plates and show
that the use of signal models with physical meaning can provide a
cepstral representation with a high discriminative power. First, we
introduce a complete digital signal model based on a physical anal-
ysis of wave propagation inside the plate. The resulting model has
several drawbacks: a high number of parameters to estimate and
the difficulty of expressing it as a classical rational transfer func-
tion, which does not allow a model parameter estimation through
classical least-squares signal modeling techniques. In order to over-
come these problems, we propose two simplifications of the physical
model also based on a mechanical analysis of the system. We carry
out a set of damage recognition experiments showing that cepstra
extracted from these models are more discriminative than other pre-
viously used methods such as the LPC cepstrum (all-pole model) or
a simple FFT cepstrum.

Index Terms— Signal modeling, feature extraction, non-
destructive evaluation, ultrasonics, composites

1. INTRODUCTION

Carbon-fiber reinforced polymers (CFRP) are high performance ad-
vanced materials with a growing applicability due to their extreme
strength-to-weight and rigidity-to-weight efficiency ratios. However,
impact-type damages are hardly visible and can induce severe degra-
dation of the material mechanical properties, while remaining invis-
ible from the surface [1]. Thus, non-destructive evaluation (NDE)
techniques are required to guarantee their reliability [2].

An important issue in these NDE systems is the analysis of the
acquired signals, which carries out the extraction of relevant infor-
mation from the tested specimen. Pagodinas [3] reviewed carefully
ultrasonic signal processing methods for the detection of defects in
composites, such as time-delay estimation methods, deconvolution
techniques or the application of wavelet transforms. First works fo-
cused on filtering techniques for noise reduction [4, 5], and decon-
volution with spectral extrapolation [6] or cepstrum [7]. In partic-
ular, the cepstrum has been previously used for ultrasound signal
characterization due to its deconvolutional properties [8]. Other re-
lated works tackle dimensionality reduction by means of linear dis-
criminant analysis (LDA), or principal components analysis (PCA)
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[9, 10]. However, most of the aforementioned studies deal with the
simple detection of damages. Thus, the final step of the system
is limited to a binary classification between damaged/undamaged
states. This requires a huge amount of experimental data and an
expensive training process, without providing any quantification of
the damage level and location.

This paper presents several digital signal models H(z) to char-
acterize the specimen being tested. The main innovation consists in
including information about flaws in the model parameters. In our
previous work [11] we have already shown that all-pole models are
suitable for this task. In particular, we showed that the cepstrum
extracted from these models provides a suitable representation to
discriminate different damage levels. In the present work, we will
propose new models which can provide even better discrimination.
This analysis leads us to two approaches with physical basis. An
important point of these proposals is to provide models with a small
number of parameters, whose goal is twofold: simple models are re-
quired for fast and practical NDE systems and, also, it helps to obtain
smoothed spectra, which can increase the NDE accuracy for dam-
age parameters reconstruction [11]. Also, we will impose that the
proposed models must be written down as a classical rational (zero-
pole) transfer function, so that a classical signal modeling method
can be applied to estimate the model parameters.

The rest of the paper is organized as follows: Section 2 exposes
the experimental setup and the proposed CFRP modeling. Section
3 outlines the main aspects of the developed model approximations.
Section 4 presents relevant results that validate the proposed models,
while section 5 discusses the feasibility of this modeling, concluding
with ongoing work issues.

2. EXPERIMENTAL SETUP AND CFRP MODELING

2.1. Experimental setup

The specimen tested is a CFRP symmetric plate that consists of four
layers. The damages were generated by applying different free-fall
impact energies. The specimen was excited by low-frequency ul-
trasonic burst sine-waves at a central frequency of 5 MHz, a du-
ration of one cycle (0.2 μs), and an amplitude that amounts to 5
Vpp. The response signal was measured at a point without dam-
age for calibration, and the measurement procedure was repeated
forty times on each undamaged and damaged locations, to generate
a relevant data set. Each measurement corresponds to the average
of 300 signal captures, providing an effective reduction of the noise
of the detected response signals, increasing the SNR around 25 dB.
The measurements have been discretized at a sample frequency fs
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Fig. 1. Experimental setup.

Fig. 2. Wave propagation between CFRP layers.

of 100 MHz/12 bits, and the corresponding number of samples per
capture is 1500 (15 μs). However, the signals have been decimated
to fs = 20 MHz (300 samples), in order to reduce part of the noise
and focus on the frequency band of interest. Figure 1 illustrates the
experimental setup used to register the ultrasonic signals [11].

2.2. Mechanical modeling

To characterize the system, it is necessary to understand how the
emitted wave propagates inside the specimen. Two main effects must
be taken into account, i.e. the impedance ratios and the attenuation.
The first concept is introduced by dealing with the general behavior
of two arbitrary successive layers, labeled as di and di+1, as showed
in Figure 2.

When an incident wave Ix propagates normally through an in-
terface Ji, it generates a transmitted component (Tx) that propagates
into layer di+1 and a reflected one (Rx) that propagates into layer di.
The resulting transmission and reflection coefficients are obtained by
applying the energy conservation principle [12],

Tx =
2Zi

Zi + Zi+1
, Rx =

Zi+1 − Zi

Zi + Zi+1
(1)

It is noteworthy that the components Tx and Rx reach further in-
terfaces and split again into reflection and transmission coefficients,
leading to a complex propagation pattern. Z denotes the impedance
of the layers being in contact. The latter is defined as,

Z =

√
ρE(1− ν)

(1 + ν)(1− 2ν)
(2)

where E, ν, and ρ are the mechanical properties associated to each
layer, for instance the Young modulus, the Poisson ratio and the den-
sity, respectively. We deal with the second concept by considering
a wave that propagates in the same homogeneous layer di from po-
sition Ji−1 to position Ji. Therefore, the wave amplitude decay is
usually defined by the common formula,

(Ai/Ai−1) = e−αimi (3)

Fig. 3. Physical modeling of CFRP plates.

where Ai and Ai−1 are the wave amplitudes at the respective posi-
tions Ji and Ji−1. α and m denote the loss factor and the thickness
of the considered layer, respectively.

Both above-mentioned mechanical concepts can be interpreted
in terms of signal modeling as gains and transfer functions. Figure
3 depicts the signal model corresponding to the considered speci-
men. For sake of simplicity, the transducer responses has been left
out from the system. The values GIN and GOUT refer to the gains
of the input and output responses, respectively, and correspond di-
rectly to the attenuation due to the transducers. The transfer function
Hn(z) is the response that models the layer n for both the forward-
and backward-propagation paths, assuming that the material behav-
ior is linear. GTij and GRij (i, j = 1, ..., 4) are the transmission
and reflection coefficients due to the interfaces between successive
layers, respectively.

3. PROPOSED MODELS

The model proposed in the previous section is quite complex and
may require a huge amount of parameters. More importantly, it can
not be straightforwardly expressed by a rational transfer function,
so that classical least-square signal modeling methods are not easy
to apply. In this section we propose two simplified models inspired
in the mechanical behavior of the plate, which achieve the required
model simplicity.

3.1. First approach

The first simplification consists in eliminating the reflection coeffi-
cients due to the layers interface. Since the mechanical properties
of the layers in the undamaged state are quite close, the resulting
transmission coefficients are much larger than the reflection ones
(Tx � Rx), as summarized in Table 1.

J1 J2 J3

R R12 = 0.0078 R23 = 0 R34 = −0.0078
T T12 = 0.9922 T23 = 1 T34 = 1.0078

Table 1. Transmission and reflection coefficients.

Under this assumption we obtain the model depicted in Figure 4,
where each layer is modeled by a transfer function Hn(z) associated
to a delay of z−mn . Function H1w(z) =

∏
n Hn(z) represents

the one-way propagation path. Assuming that H1w(z) is all-pole
and neglecting a global delay factor z−M , the global (closed-loop)
transfer function H(z) can be obtained as,

H(z) =

q∑
k=0

bkz
−k

1 +
p∑

k=1

akz−k +
2M+s∑
k=2M

akz−k

(4)
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Fig. 4. Block diagram of the first approach.

where M denotes the number of samples corresponding to the spec-
imen width (M = 12), p+ s determines the number of coefficients
used in the denominator, and q corresponds to the number of pa-
rameters in the numerator. This transfer function corresponds to a
zero-pole model. It is worth pointing out that the coefficients ak are
not consecutive and represent both short-term and long-term corre-
lations with orders p and s, respectively.

3.2. Second approach

The first approximation has the disadvantage that it does not fit well
parts of the signals that correspond to the inner reflections that suffer
the wave within the specimen. Obviously, the strong assumption of
neglecting this kind of reflections leads to a lack of accuracy.

Thus, a more accurate model requires taking into account these
reflections somehow. For this reason, we propose a second approach
which tries to account for the aforementioned reflections with a sin-
gle virtual interface Jv . This idea is depicted at figure 5. Under this
approach, the model behaves quite similarly as a bi-layered model.
In a physically consistent model, wave component RE1 should gen-
erate both reflected and transmitted components at the virtual inter-
face. However, in our approach, the reflected one is neglected in or-
der to obtain an even simpler model. This approximation is justified
since the reflected part of wave component RE1 is weak: (i) in the
undamaged case, TE1 � RI1, and thus the transmission produced
by RE1 at the virtual interface Jv is much larger than the reflection.
(ii) in a damaged case, TE1 > RI1, and thus RE1 is quite weak, and
its corresponding reflection even weaker.

With the introduced approximation, the signal model of our sec-
ond approach will be that depicted in figure 6, whose transfer func-
tion can be expressed as follows,

H(z) =

q∑
k=0

bkz
−k

1 +
p∑

k=1

akz−k +
2m+r∑
k=2m

akz−k +
2M+s∑
k=2M

akz−k

(5)

where m and r denote the virtual interface position and the num-
ber of coefficients used to model this interface, respectively. This
is again a zero-pole model whose denominator includes short-term,
medium-term and long-term sums with orders p, r and s, respec-
tively. The two last sums, namely medium-term and long-term, ac-
count for the reflections at the virtual and transducer-specimen inter-
faces.

 

…  … 

…  … …  

Fig. 5. Wave propagation scheme for the second approximated
model.

Fig. 6. Block diagram of the signal model corresponding to the sec-
ond approach.

4. EXPERIMENTAL RESULTS

In order to evaluate the discriminative capability of the proposed
models, a damage classification system based on cepstral distances
has been developed, based on our previous work [11]. For an optimal
use of the available data set, the training/test is performed using the
leaving-one-out technique. Therefore, 39 signals are used to train
a reference cepstral vector corresponding to a certain damage level,
while the remaining signal is used for the test. Rotating the measure-
ments enables us to train the system always with 39 signals, while
testing it with 6× 40 = 240 signals. In addition to the classification
error (Err[%]), the efficiency of the system is evaluated by defining a
weighted error factor. Let the results of the test be a confusion table
R(i, j), with i, j = 1, . . . , 6, where R(i, j) represents the number
of measurements at damage level i that have been classified as a
damage level j. The weighted error factor is then defined as,

werr[%] = 100×
∑6

i=1

∑6
j=1 R(i, j) · |i−j|

3

240
. (6)
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Real cepstrum LPC cepstrum AP1 cepstrum AP2 cepstrum
(p = 25) (p = 17, s = 1) (p = 14, r = 1, s = 1)

Time window Rect. Hamm. Rect. Hamm. Rect. Hamm. Rect. Hamm.

Werr[%] 11.80 8.19 8.19 7.22 6.81 6.25 5.28 3.06
Err[%] 26.67 14.58 15.00 12.92 13.75 10.41 9.58 6.67

Table 2. Classification errors for different cepstrum-based techniques.

Thus, when the erroneously recognized class corresponds to a dam-
age close to that of the correct class, the error has less influence on
the error rate.

Table 2 shows the results obtained for different cepstrum-based
techniques. Each experiment has been conducted twice using rectan-
gular and Hamming windowing of 300 samples in the time-domain.
The tested techniques employ the real cepstrum c(n), which is de-
fined by means of the following expression,

log |H(ω)| =
∞∑

n=−∞
c(n) · ejωn

(7)

where H(ω) is the obtained spectrum estimate. In fact, the way of
estimating the spectrum is the only difference between these tech-
niques. Thus, Real cepstrum consists in using the periodogram ob-
tained directly from the windowed signal, and corresponds to our
baseline. The technique called LPC cepstrum is based on the use of
a standard all-pole model with order p = 25, as described in our pre-
vious work [11]. Finally, the techniques named AP1 cepstrum and
AP2 cepstrum are based on the first and second approaches proposed
in the previous sections using 18 and 16 parameters, respectively. In
these latter cases, H(z) is estimated with the Prony’s method. Al-
though the proposed models could be zero-pole, AP1 and AP2 also
correspond to all-pole models since some preliminary experiments
have shown that zeros, although could be helpful to obtain a mini-
mum modeling error, do not provide useful information for discrim-
ination. Finally, it is necessary to note that M and m were fixed to
12 and 9 samples, respectively, in order to model the total width of
the plate and the position of the virtual interface.

Minimal weighted error (3.06 %) is obtained with the second-
approach for signals that have been previously preprocessed with
a Hamming window. First, these results confirm that the use of a
Hamming window improves the classification. More interesting is
the fact that a modeling that includes mechanical information and a
reduced number of parameters has a better discriminative capability
than classical cepstrum-based approaches. Finally, it is noteworthy
that adding a single coefficient in the middle-term sum of Equation
5 reduces the weighted error to its half part.

5. CONCLUSIONS

This study shows the capability of a mechanical-based signal mod-
eling to discriminate the damage level of a CFRP plate subjected
to different impact energies. The discriminative performance of the
proposed parameterization has been evaluated by a system based on
cepstral distances that recognizes the specific damage level corre-
sponding to a given test signal, leading to the following conclusions:
(1) It has been demonstrated that modeling the complex wave prop-
agation pattern using a virtual interface provides better results than
other classical cepstrum-based techniques. (2) It has been confirmed
that the use of a temporal windowing improves the classification,
and thus the importance of considering the echoes for discriminating

between different damage levels. Ongoing works may include a fur-
ther study and incorporation of the underlying mechanical concepts,
in order to provide higher sensitivity on the damage parameters.
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