
IMPLEMENTATION OF GENERALIZED DFT ON FIELD PROGRAMMABLE GATE ARRAY

Wes P. Weydig, Mustafa U. Torun†, and Ali N. Akansu†∗

Qualcomm
New Jersey Research & Development Center

500 Somerset Corporate Boulevard, Bridgewater, NJ 08807, USA

†Department of Electrical and Computer Engineering
New Jersey Institute of Technology

University Heights, Newark, NJ 07102 USA

ABSTRACT
We introduce the implementation of Generalized Discrete

Fourier Transform (GDFT) with nonlinear phase on a Field

Programmable Gate Array (FPGA.) After briefly revisiting

the GDFT framework, we apply the framework to a channel

equalization problem in an Orthogonal Frequency Division

Multiplexing (OFDM) communication system. The block

diagram of the system is introduced and detailed explanations

of the implementation for each block are given along with the

necessary VHDL code snippets. The resource usage and reg-

istered performance of the design is reported and alternatives

to improve the design in terms of performance and resolution

are provided. To the best of our knowledge, this is the first

hardware implementation of GDFT reported in the literature.

Index Terms— GDFT, FPGA, OFDM

1. GENERALIZED DFT

An N th root of unity is a complex number satisfying the

equation

zN = 1 N = 1, 2, . . .

If zm
p �= 1 with m = 1, 2, . . . , N − 1, then zp is defined as

the pth primitive N th root of unity and m and N must be co-

prime integers. The complex number z1 = ej(2π/N) is the

primitive N th root of unity with the smallest positive argu-

ment. There are N distinct N th roots of unity for any primi-

tive and expressed as zk = (zp)k
where k = 1, 2, . . . , N ∀p,

zp is any of the primitive N th root of unity. As an example,

z1 = ej2π/4 and z2 = ej3π/2 are the two primitive N th roots

of unity for N = 4. The summation of a primitive N th root
of unity in a geometric series is expressed as follows

N−1∑
n=0

(zp)n = (zp)N − 1
zp − 1 =

{
1 N = 1
0 N > 1

∀p (1)

*Corresponding author: akansu@njit.edu

Now, let’s define a periodic, constant modulus, complex se-

quence {er(n)} as the rth power of the first primitive N th

root of unity z1 raised to the nth power as expressed in

er(n) � (zr
1)n = ej(2πr/N)n

where n, r = 0, 1, . . . , N −1. The sum of its geometric series

is expressed according to Eq. 1 as follows [1]

1
N

N−1∑
n=0

(zr
1)n = 1

N

N−1∑
n=0

ej(2πr/N)n =
{

1 r = mN

0 r �= mN
(2)

where m is an integer. Let’s generalize Eq. 2 by rewriting the

phase as the difference of two functions φkl(n) = φk(n) −
φl(n) = r and expressing a constant modulus orthogonal set

as follows

1
N

N−1∑
n=0

ej(2πr/N)n = 1
N

N−1∑
n=0

ej[2πφkl(n)/N]n

=
{

1 φkl(n) = φk(n) − φl(n) = k − l = r = mN

0 φkl(n) = φk(n) − φl(n) = k − l = r �= mN

= 1
N

N−1∑
n=0

ej[2πφk(n)/N]ne−j[2πφl(n)/N]n

= 〈ek(n), e∗
l (n)〉 (3)

and k, l, n ∈ {0, 1, . . . , N − 1}. Hence, the basis functions

of the new orthogonal set are defined as

{ek(n)} � ej(2π/N)φk(n)n (4)

This orthogonal set is called as the Generalized Discrete
Fourier Transform (GDFT) with nonlinear phase [1]. It is

observed from Eq. 2 and Eq. 3 that it is an uncountable set,
and there are infinitely many sets of constant modulus and

nonlinear phase functions available.

1709978-1-4673-0046-9/12/$26.00 ©2012 IEEE ICASSP 2012

Serial
To

Parallel

Serial Input Stream

Xs(0)
Xs(1)
Xs(2)
Xs(3)
Xs(4)
Xs(5)
Xs(6)
Xs(7)

Clock

A

Ys(0)
Ys(1)
Ys(2)
Ys(3)
Ys(4)
Ys(5)
Ys(6)
Ys(7)

A
Parallel
To
Serial

Xr(0)
Xr(1)
Xr(2)
Xr(3)
Xr(4)
Xr(5)
Xr(6)
Xr(7)

Yr(0)
Yr(1)
Yr(2)
Yr(3)
Yr(4)
Yr(5)
Yr(6)
Yr(7)

G-1 H

Serial Output Stream

Clock

Fig. 1. Block diagram of the GDFT based OFDM communi-

cation system.

2. GDFT BASED OFDM SYSTEM

The block diagram of the GDFT based OFDM system under

consideration is given in Fig. 1. It can be observed from the

block diagram that the transmitter output is an N × 1 vector

as given

Ys = GA−1xs (5)

where xs is an N × 1 input data vector, A is the N × N dis-

crete Fourier transform (DFT) matrix, and G is the matrix that

provides the non-linearity in the phase domain as introduced

by the GDFT framework. The channel response is modeled

such that the channel output is equal to

Yr = HYs (6)

where H is an N × N channel response matrix. The receiver

multiplies the channel output with the DFT matrix from left

as given

xr = AYr (7)

Substitution of Eqs. 5 and 6 into Eq. 7 yields

xr = AHYs = AHGA−1xs (8)

Since the purpose of this study is to implement GDFT on an

FPGA, for the sake of simplicity of the discussion, it is as-

sumed that the channel response, H is known a priori, thus it

is possible to choose G⊥H. Given that and given AA−1 = I
where I is the identity matrix, it follows from Eq. 8 that

xr = xs (9)

which is a desired property for a communication system. In

order to further simplify the discussion, it is assumed that the

channel is single-path and it only introduces phase distortion,

i.e. H is in the form

[H]ij =
{

ejθi i = j

0 i �= j
(10)

Also note that, the system under consideration is implemented

on a single FPGA chip, and no noise generators are imple-

mented. In other words no noise is introduced in the channel

in the system. This is not realistic, but again, our focus in this

study is to implement GDFT and it is straightforward for a

system engineer to further develop the design we present for

real-world applications.

3. IMPLEMENTATION

Details of the several blocks given in Fig. 1 and correspond-

ing implementation techniques employed are given in this

section.

3.1. Serial to Parallel and Parallel to Serial Blocks

The first block of the system is the serial to parallel block

which receives a serial stream of binary data and delivers it to

the next block, the IFFT block, as an N × 1 binary column

vector where N is the FFT size used in the OFDM system.

This operation is done in hardware by first identifying the start

of data transmission. At every Nth rising edge of the clock, a

frame signal is used to reload the N bit register with the next

set of values. Moreover, at each rising edge of the clock, a

new data bit is being shifted into the register. The frame signal

is generated from an M = log2 N bit counter that begins

counting once the reset signal goes from logic high to logic

zero.

The FFT block, delivers data in N × 1 size vectors. The

last block in the system, parallel to serial block, receives the

data from FFT block in vector form and serializes it for the

delivery to the user. The start of frame is identified by two

signals that are derived from the FFT block. These two sig-

nals, when active together, indicate the start of a new frame.

The output of the FFT block is loaded into a register at a frame

signal. A logic zero is shifted into the least significant bit at

every clock cycle. To clock the data serially, N − 1 indexed

bit is fed with a new value at every clock cycle by virtue of

the logic zero being shifted into the register.

3.2. FFT and IFFT Blocks

The FFT and IFFT blocks are designed to perform an N
length, radix-2 Cooley-Tukey algorithm [2]. Each butter-

fly processor that form the FFT and IFFT blocks contains a

complex multiplication block that instantiates the multipliers,

adders, subtractors for the complex mathematical calculations

[3]. The FFT block was designed for the graduate FPGA lab-

oratory manual at NJIT [4]. The IFFT block is basically an

FFT block except for a sign change and a scale factor of N ,

i.e. the output of the block is divided by N . Since the division

is by a power of two, it does not consume additional resources

in the FPGA. Ignoring the least significant log2 N bits at the

output does the job. However, this operation results in a loss

of precision. In order to partially compensate for this loss,

an additional stage is added to the output of the IFFT which

rounds the result up or down based on log2 N − 1 indexed bit

1710

8
118 = 0111 0110

Bit Two = 1

0000 1111 = 15

118 8 = 14.75

+
18

120 = 0111 1000

Bit Two = 0

0000 1111 = 15

+
0

120 8 = 15

8
114 = 0111 0010

Bit Two = 0

0000 1110 = 14

+
0

114 8 = 14.25

8
116 = 0111 0100

Bit Two = 1

0000 1111 = 15

+
1

116 8 = 14.5

Fig. 2. Examples of rounding operation.

of the IFFT output. A simple example of the operation of this

block is illustrated in Fig. 2.

Implementation of this block consists of registering the

original bit locations, i.e. N − 2 through M = log2 N , and

sign extending the pre-rounded result as displayed in Alg. 1.

The M − 1 least significant bits are discarded at this point.

Bit M − 1 is preserved in its own register. Then, bit M − 1
which was registered at the previous clock cycle is now used

to decide whether to round up or not (See Alg. 1.) The whole

process incurs two cycles of latency for each rounding process

in the design.

3.3. GDFT and Channel Blocks

The output of the IFFT block consists of N complex numbers.

In our case, G is a diagonal matrix with complex elements,

the first matrix multiplication in Eq. 5 boils down to a number

of N complex number multiplications. Multiplication of two

complex numbers requires First Outer Inner Last (FOIL) op-

eration to be performed which consists of four multiplications

and two additions. These operations were performed by in-

stantiating an Altera library of parametrized modules (LPM),

multiplier, and an LPM add/subtract block [5]. These blocks

are configurable and implement the specified operation with

either no pipeline delay, i.e. purely combinatorial, or the la-

tency that may be specified in terms of clock cycles in order

to stage pipeline operations. The current design is configured

to synthesize these modules combinatorially. The channel re-

sponse block, i.e. Eq. 6, is implemented in the same fashion

as described above.

It is also worthy to mention that multipliers implemented

in this section require the results to be divided by 2N since

Algorithm 1 Rounding operation.
yre_pre_round <= yre(N-1) & yre(N-1) & yre(N-1) &
yre(N-1) & yre(N-2 downto M);
yre_bit_two <= yre(M-1);
IF (yre_bit_two = ’1’) THEN
yre_post_round <= yre_pre_round + ’1’;

ELSE
yre_post_round <= yre_pre_round;

END IF;

the elements of G and H matrices are normalized to N bits.

Therefore, in an attempt to reduce the loss of precision, the

special rounding operator introduced in the previous section

is also utilized in these blocks.

4. RESOURCES AND PERFORMANCE

For simulation, resource, and performance analysis studies,

the FFT length parameter of the system is selected as N = 8.

The length-8 FFT and length-8 IFFT require 12 multipli-

ers, each along with 12 adders/subtractors. These elements

are required to implement the Cooley-Tukey algorithm [2].

Along the 3 stages of the algorithm there are 4 multipliers

required along with the 4 add/subtract functions. The G and

H matrix multipliers require 4 DSP elements each and 2

adders/subtractors due to the complex calculations required

to perform the matrix multiplication.

The system is implemented on an Altera DSP develop-

ment platform [6] coded in VHDL. The FPGA on the plat-

form is a Stratix II EP2S60F672 [7]. Overall, the implementa-

tion of the system consumes 8% of the logic resources (1,745

out of 48,352 combinational look up tables. i.e. ALUT’s and

3,155 out of 48,352 dedicated logic registers) and 11% (32

out of 288) of the DSP elements available on the device. The

resource usage report indicates that it is possible to improve

the design in order to accommodate larger length FFT blocks

which may add more granularity at the output of each stage

in the design at the expense of additional resources.

The system performs at a maximum frequency of 150

MHz with no setup or hold violations. The maximum op-

erating frequency of the design may be improved upon by us-

ing the pipeline settings in the multipliers and adder blocks.

This will ensure that there are clocked stages in these blocks

thereby reducing the amount of combinatorial logic between

clocked stages. The design uses these modules with the la-

tency parameter set to zero.

5. SIMULATIONS

As stated in the previous section, the FFT length of the system

is selected as N = 8. Further, the channel response matrix

defined in Eq. 10 used in the simulation is selected to be

H = diag
(

ej π
6 , ej π

3 , ej π
2 , ej 2π

3 , ej 5π
6 , ejπ, ej 7π

6 , ej 4π
3

)
Note that, H , is an 8 × 8 diagonal matrix consisting of 8 con-

stant modulus complex numbers. Therefore in order to ensure

that G⊥H, it is enough to choose G = H∗ where superscript

∗ is the complex conjugation operator. In the implementation,

the elements of H and G are converted to Cartesian form and

real and imaginary parts are represented with 8 bits each. For

instance, the element on the first row and the first column

of matrix H, ej π
6 , is equal to 0.866 + j0.5 or approximately

110/128+j (64/128) . Hence, it is possible to represent these

1711

Fig. 3. Simulation results obtained with Altera ModelSim.

numbers as a fraction of 128. Therefore, the polar number,

ej π
6 is represented as 110 + j64 in decimal or 6E + j40 in

hexadecimal base. The H and G matrices are declared as

constant arrays of hexadecimal numbers of size 8 × 1. The

design allows us to use any kind of signal such as a BPSK

or M-QAM as an input. However for the test purposes the

data source used for simulations is a periodic discrete ramp

function where a period is defined as

xs =
[

22 20 18 16 14 12 10 8
]T

where superscript T is the transpose operator. Simulation re-

sults obtained with Altera ModelSim and actual results run-

ning in hardware obtained with Altera SignalTap (a software

that allows the designer to probe signals in the FPGA and

view them in a logic analyzer type display [8]) are given in

Fig. 3 and Fig. 4, respectively. Examination of the input and

output signals on both figures clearly shows that the simula-

tion results match the actual results with no deviation in the

signals. However, the output data vector, xr, is not exactly

equal to the input data vector, xs, as given by Eq. 9, due

to the several quantization errors introduced with the imple-

mentation. The number of bits to represent numbers must be

increased to improve the precision with the cost of increased

resource usage.

6. CONCLUSIONS AND FUTURE WORK

The implementation of GDFT with nonlinear phase on FPGA

is introduced. The framework is applied to a channel equal-

ization problem in an OFDM communication system. Im-

plementation details of the main blocks are presented along

with the necessary VHDL code snippets. The design only

uses about 10% of the resources at the Altera Stratix II

EP2S60F672 chip with the registered performance of 150

MHz. Employing pipelining methods and increasing the

number of bits to represent numbers are proposed to boost

the speed and precision of the design. Authors are planning to

implement the proposed methods on top of the current design

and to measure the performance for different FFT lengths as

future work. Generalized DFT with nonlinear phase is an-

Fig. 4. Actual results running in hardware obtained with Al-

tera SignalTap.

ticipated to be an important component of the wireless com-

munications systems of tomorrow. This is the first hardware

implementation of GDFT, and offers engineering community

a head start to utilize it as a potential improvement to DFT

based technologies in various fields.

7. REFERENCES

[1] A. N. Akansu and H. Agirman-Tosun, “Generalized dis-

crete Fourier transform with nonlinear phase,” IEEE
Trans. Signal Processing, vol. 58, no. 9, pp. 4547–4556,

Sep 2010.

[2] James W. Cooley and John W. Tukey, “An Algorithm

for the Machine Calculation of Complex Fourier Series,”

Mathematics of Computation, vol. 19, no. 90, pp. 297–

301, 1965.

[3] Uwe Meyer-Baese, Digital Signal Processing with Field
Programmable Gate Arrays (Signals and Communication
Technology), Springer-Verlag New York, Inc., Secaucus,

NJ, USA, 2004.

[4] A. N. Akansu and M. U. Torun, Graduate Laboratory
Manual for ECE 641 Digital Signal Processing with Field
Programmable Gate Arrays, NJIT, 3 edition, Jan 2011.

[5] Altera, LPM Quick Reference Guide, Dec 1996.

[6] Altera, Nios Development Board Stratix II Edition Refer-
ence Manual, 1.3 edition, May 2007.

[7] Altera, Stratix II Device Handbook, Volume 1, May 2007.

[8] Altera, Quartus II Handbook, Volume 3: Verification,

10.1 edition, Dec 2010.

1712

