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ABSTRACT

We explore interesting connections between blind source sep-
aration (BSS) and acoustic echo cancellation (AEC), and de-
velop a framework where the AEC problem is transformed
and solved as a BSS problem. We show that by careful se-
lection of the BSS algorithm the double-talk (DT) problem
in AEC is solved without the need to use a DT detector or a
step-size controller. Furthermore, the echo cancellation per-
formance is maintained even during single-talk when only
the far-end speaker is active. The algorithm converges to the
true echo path much faster than the normalized least-mean
squares adaptation. Moreover, the proposed algorithm does
not require a knowledge of the echo-tail length and is ro-
bust against under estimation of the echo-filter length. The
simple implementation and fast convergence of the proposed
method makes it a suitable candidate for implementation on
low-power general purpose DSPs.

Index Terms— Blind signal separation, Acoustic Echo
Cancellation, Double Talk, Impulse Response

1. INTRODUCTION

Acoustic echo cancellation (AEC) is a classical problem with
a history that dates back to 1960s [1]. Since then a number
of attractive methods have been proposed to address various
aspects of this problem. One of the issues that has remained
at the forefront of AEC development is its handling of the
double talk (DT). DT refers to simultaneous activation of the
far-end and the near-end speakers. The adaptive filter in an
echo canceler is designed to cancel only the far-end echo,
and any presence of near-end signal strongly influences its
convergence. The resulting mis-convergence causes the far-
end listener to hear its own echo at the onset of the near-end
speech, which is annoying and undesirable. Ever since the
development of the first echo canceller several methods have
been proposed to tackle the DT. Certain solutions handle it
by restricting the communication to only one way; i.e., half-
duplex. In other cases, a DT detector is used that freezes fil-
ter adaptation in the presence of DT [1]. While half-duplex
communication is not desirable in many situations the DT de-
tector based AEC has its own issues as well. First, in order to

benefit from frozen adaptation, the DT detector has to be effi-
cient in its estimation of start and end of the near-end speech.
Any mis-detection may lead to near-end speech leakage in
the uplink communication. Secondly, the echo cancellation
may suffer if the echo path changes during the time of frozen
adaptation.

In this paper we address the DT problem in AEC from a
practical point of view. We develop an interesting relation-
ship between AEC and blind source separation (BSS) and
propose to transform the AEC problem into a BSS problem.
BSS methods, in general, aim to separate spatially distributed
speech signals using multiple microphones [2]. In other ap-
plications they help to separate desired speech embedded in
noise. In this work, we will show how a two-microphone BSS
setup can be used to solve AEC even when only one micro-
phone is available. We prove that by treating the near-end
speaker and the far-end speaker as two statistically uncorre-
lated speech sources, application of BSS leads to their separa-
tion and subsequent recovery of the near-end speech when DT
is present. Furthermore, we formulate the problem such that
the algorithm convergence is not disturbed when the conver-
sation switches from single talk to DT or vice versa. In other
words, the algorithm requires no step-size control or a DT de-
tector for convergence control. We will also show that the
algorithm is robust against under determination of the echo-
filter length. The fast convergence of the algorithm and its
simple processing makes it a good fit for handheld and hands-
free speech communication applications.

2. AEC AND THE DOUBLE-TALK PROBLEM

Fig. 1 shows an AEC setup, where s1(n) and s2(n) are the
far-end and near-end speakers, respectively. The echo path
from the loudspeaker to the microphone is modeled by a length-

L FIR filter h21(n) =
[
h0

21(n), h1
21(n), . . . , hL−1

21 (n)
]T

,
where the superscript on the filter coefficient denotes the tap
index and [·]T denotes transposition. Likewise, the adaptive
filter of length P is denoted by w21(n) =

[
w0

21(n), w1
21(n),

. . . , wP−1
21 (n)

]T
. The reason for using the subscript “21” will

become clear as we describe the BSS problem in Section 3.
The update of the filter w21(n) using the well-known nor-
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malized least-mean squares (NLMS) algorithm is governed
by [1]

wk
21(n) = wk

21(n − 1) + α
e(n)x∗

1(n − k)∑P−1
i=0 |x1(n − i)|

2
, (1)

for k = 0, . . . , P − 1, where α is the adaptation constant
and (·)∗ denotes complex conjugation. The echo is cancelled
when w21(n) = h21(n). In the event of the DT there is a ten-
dency for the AEC to diverge resulting in leakage of the far-
end echo in the uplink channel. Handling of the DT in AEC
has always remained an area of interest within the speech re-
search community. Several notable methods have been pro-
posed for this purpose. In [3], [4], [5], and [6] an extra com-
ponent is employed in the AEC to help avoid filter divergence
during DT. This component could be in the form of a DT de-
tector or a step-size controller. In [7] the authors presented a
variable step-size NLMS (VSS-NLMS) algorithm that is ro-
bust against DT. The automatic step-size control mechanism
of this method halts the adaptation during instances of DT.
Though the algorithm did not require explicit DT detection,
its convergence rate was slow and of the order of the NLMS
method.

Fig. 1. AEC setup.

3. AEC IN BSS FRAMEWORK

BSS relies on the statistical independence of the source sig-
nals to separate them from their mixtures. A 2-input 2-output
BSS setup is shown in Fig. 2, where the signals s1(n) and
s2(n) are mixed using FIR filters hij(n), i, j = 1, 2. The
two mixed outputs x1(n) and x2(n) are recorded by two spa-
tially separated microphones. In an acoustic environment, the
two signals corresponds to two speakers or to a speaker and
a noise source, whereas the four FIR filters model the room
impulse responses from each source to a microphone location.
The objective of BSS is to separate and recover the two source
signals using only the two recorded microphone outputs. The
separation is carried out using a symmetrical un-mixing stage
where the FIR filters wij(n), i, j = 1, 2 are adapted such that
the two outputs ŝ1(n) and ŝ2(n) are statistically independent.
Mathematically, this statistical independence is represented
by [2]

E {ŝ1(n)ŝ∗2(n − m)} = 0; ∀m, (2)

where E{·} denotes statistical expectation and (̂·) denotes an
estimate. At convergence, the two mixed signals s1(n) and
s2(n) are recovered at the output.

With the BSS setup of Fig. 2 in mind if we recall the DT
problem in AEC we realize that, in fact, we try to separate
a mixture of the near-end and far-end speech signals using
the microphone output x2(n). Since the near-end and far-end
signals originate from different speakers it is safe to assume
that they are statistically independent. We can, therefore, use
BSS to recover the near-end speech signal from its mixture
with the far-end echo. The setup of Fig. 2 can be simplified
to a functionally-equivalent AEC setup of Fig. 3 by choosing
h11 = 1, h22 = 1, and h12 = 0. Consequently, the un-
mixing section will have w11 = 1, w22 = 1, and w12 = 0.
Note that the resulting BSS setup shown in Fig. 3 is equiv-
alent to Fig. 1. We note that one of the microphone inputs
is replaced by the reference signal x1(n) = s1(n) whereas
the other microphone input is the sum of the echo signal and
the near-end speech. The filter w12(n) is adapted such that
the signals s1(n) and s2(n) are statistically independent and
uncorrelated. An adaptation method will be presented in Sec-
tion 4.

Fig. 2. A two-channel BSS setup.

Fig. 3. A functionally equivalent AEC setup.

In [8] the author proposed an approach somewhat simi-
lar to ours in using BSS for handling the DT. However, the
method in [8] works only during the continuous DT period;
i.e., when both the far-end as well as the near-end speech is
present. Furthermore, slow convergence rate was reported
in [8] and the author suggested to use the method as a com-
plement to a conventional and fast-converging AEC method
operating during single talk.
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4. THE DT-ROBUST AEC ALGORITHM

Let us stack the two speech signals in the vector form as
s(n) = [s1(n), s2(n)]T . The two received signals are mod-
eled as convolutive mixtures of the two speech signals and
can be expressed in matrix-vector form as

x(n) = H(n) ∗ s(n), (3)

where x(n) = [x1(n), x2(n)]T is the received signal vector,

H(n) =

[
1 0

h21(n) 1

]
is the (2× 2) mixing filter matrix of

L-point impulse responses, and ∗ is the convolution operator.
In general, the aim of the BSS method is to find a (2 × 2) un-
mixing filter W(n) of length P that separates the two sources

ŝ(n) = W(n) ∗ x(n), (4)

where W(n) =

[
1 0

w21(n) 1

]
. Our objective in the equiv-

alent AEC setup of Fig. 3 is to extract only the source signal
s2(n).

We propose to transform the time-domain convolutivemix-
ture x(n) in (3) to an instantaneous mixture in the frequency
domain by computing its T -point short-time Fourier trans-
form

x(ω, m) = H(ω)s(ω, m), (5)

where m is the block index. In practice, x(ω, m) can be ob-
tained as follows

x(ω, m) =

T−1∑
τ=0

γ(τ)x(βTm + τ)e−j2πωτ/T , (6)

for ω = 1, . . . , T , where γ(τ) is a window function and β

(0 < β ≤ 1) is the data overlap factor. The covariance matrix
Rx(ω, k), assuming ergodicity of the received data, can be
estimated using M , possibly overlapping, blocks of x(ω, m)
as follows

R̂x(ω, k) =
1

M

M−1∑
m=0

x(ω, Mk + m)xH(ω, Mk + m), (7)

for k = 0, . . . , K − 1, where (·)H denotes conjugate trans-
position. The un-mixing filter matrix W(ω) decorrelates the
estimated source signals ŝ1(n) and ŝ2(n) by diagonalizing
their covariance matrix given by

Λbs(ω, k) = W(ω)R̂x(ω, k)WH(ω). (8)

We showed in [2] that for non-stationary signals, we can write
independent decorrelation equations (8) for K sufficiently sep-
arated time intervals. The un-mixing filter W(ω) for each
frequency bin ω (ω = 1, . . . , T ) that simultaneously satisfies
the K decorrelation equations can then be obtained using an
over-determined least-squares solution

Ŵ(ω) = arg min
W(ω)

K∑
k=1

‖V(ω, k)‖2, (9)

where ‖ ·‖2 is the squared Frobenius norm (sum of squares of
all elements) and the error

V(ω, k) = W(ω)R̂x(ω, k)WH(ω)

−diag
[
W(ω)R̂x(ω, k)WH(ω)

]
, (10)

where diag[·] is the diagonal matrix formed by extracting the
diagonal elements of the matrix argument. Note that in (8)
there are only two unknowns: W21(ω) and Λs2

(ω, k), whereas,
because of the symmetry of the matrix, there are three con-
straints in the same equation. This significantly simplifies the
BSS problem and makes is extremely suitable for real-time
implementation since K can be chosen as small as 1 to sat-
isfy the over-determined condition.

In practice, the least-squares solution to (9) can be ob-
tained using the well-known steepest descent algorithm

W
(l+1)(ω) = W

(l)(ω) − μ(ω)

·
∂

∂W(l)∗(ω)

{
K∑

k=1

‖V(l)(ω, k)‖2

}
(11)

for ω = 1, . . . , T . Following [2], we use a step size of the
form

μ(ω) =
η∑K

k=1 ‖R̂x(ω, k)‖2
, (12)

where η is a normalized step size. At each iteration, we only
update one of the off-diagonal elements, W21(ω), of W(ω)
while retaining the remaining elements at their initial values.
As we shall see in the next section, this key step ensures that
the filter convergence remain on track even if the near-end
speech is not present in the single-talk case. We will also
see that the independent step size at each frequency promotes
overall convergence of the algorithm. At convergence, time-
domain signal s2(n) is obtained using inverse Fourier trans-
form.

5. SIMULATION RESULTS

In our experiments, we will focus on the following aspects
of the AEC: (1) performance in the presence of DT, (2) con-
vergence rate, and (3) performance when the adaptive-filter
length is under estimated. A male speaker is at the far end of
the conversation whereas a female speaker is at the near end.
Fig. 4 shows the two speech signals. The echo length is about
30msec. The average far-end to DT ratio is about 5dB. It is
seen that the near-end speech is active only for time duration
from 10sec to about 21sec. This helps us to evaluate the AEC
performance going from single talk to the DT mode and back.
We will compare the proposed method against the NLMS-
based AEC, which is a widely used algorithm employed in
most commercial applications.

We will use adaptive-filter misalignment as the perfor-
mance indicator. It is defined as

20 log 10
‖h21 − w21‖

‖h21‖
. (13)
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Fig. 4. The two speech signals used in the experiment. s1(n)
is the far-end speech, whereas s2(n) is the near-end speech.

For NLMS adaptation, we used α = 0.5, whereas for the
proposed method we used η = 0.5, T = 512, β = 0.5 (50%
overlap), and M = 10. A Hamming window function was
used for γ(τ) and we began our experiments with a value of
P = 256.
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Fig. 5. Misalignment plots of the NLMS-based AEC and the
proposed method (P = 256 and P = 128)

.

Fig. 5 shows the divergence of the NLMS-based AEC at
the onset of the near-end speech. The algorithm then re-tries
to converge as soon as the near-end speaker pauses during
conversation. On the other hand, the BSS-based AEC con-
verges much faster than the NLMS method and stays con-
verged during and after the DT. We also note that the mis-
alignment remains the same even when the adaptivefilter length

P is reduced to 128 taps.

6. CONCLUSION

We transformed the AEC problem to a BSS framework and
solved it using a frequency-domainsecond-order statistics based
method. We showed that by minimizing the statistical corre-
lation between the far-end and the near-end speech signals in
BSS guarantees that the echo is cancelled during single talk as
well as during DT. No extra control or component is required
to deal with the DT. The variable step-size assignment in fre-
quency domain promotes convergence and the resulting AEC
algorithm is robust against under determination of the adap-
tive filter-length. All these properties makes this algorithm an
excellent candidate for implementation on low-power DSPs.

7. REFERENCES

[1] S. Gay and J. Benesty, Eds., Acoustic Signal Process-
ing for Telecommunication, Norwell, MA: Kluwer Aca-
demic, 2000.

[2] M. Z. Ikram and D. R. Morgan, “Permutation inconsis-
tency in blind speech separation: Investigation and solu-
tions,” IEEE Trans. Speech and Audio Processing, vol.
13, no. 1, pp. 1–13, Jan. 2005.

[3] K.-H. Lee, J.-H. Chang, N. S. Kim, S. Kang, and Y. Kim,
“Frequency-domain double-talk detection based on the
Gaussian mixture model,” IEEE Signal Processing Let-
ters, vol. 17, no. 5, pp. 453–456, May 2010.

[4] R. Oka, K. Fujii, and M. Muneyasu, “A step size control
method steadily reducing acoustic echo even during dou-
ble talk,” in Proc. Int. Symp. Intelligent Signal Processing
and Communication Systems, 2008.

[5] H. Buchner, J. Benesty, T. Gänsler, and W. Kellermann,
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