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ABSTRACT

Photovoltaics (PV) is an important and rapidly growing area
of research. With the advent of power system monitoring and
communication technology collectively known as the “smart
grid,” an opportunity exists to apply signal processing tech-
niques to monitoring and control of PV arrays. In this paper a
monitoring system which provides real-timemeasurements of
each PV module’s voltage and current is considered. A fault
detection algorithm formulated as a clustering problem and
addressed using the robust minimum covariance determinant
(MCD) estimator is described; its performance on simulated
instances of arc and ground faults is evaluated. The algorithm
is found to perform well on many types of faults commonly
occurring in PV arrays.

Index Terms— Electrical Fault Detection, Photovoltaic
Systems

1. INTRODUCTION

Although rapid progress has been made in the construction
of photovoltaic (PV) modules and inverters (DC-AC convert-
ers), management of PV arrays remains an open problem. To
ameliorate this, a monitoring system can be deployed within a
PV array, providing high-resolution real-time measurements.
These data are available to be used to evaluate the perfor-
mance of the array, quantify the effects of PV module aging,
and quickly identify faults and under-performing modules.
In this paper we present an algorithm which applies clus-
tering, robust estimation, and anomaly detection techniques
from signal processing to the problem of PV array fault de-
tection.

PV arrays are highly reliable: a typical new PV mod-
ule is sold with a 25-year warranty guaranteeing performance
degradation of no more than 1% of rated power output per
year. Inverters are somewhat less reliable, typically sold with
a 5-year warranty. Despite the high reliability of PV system
components, outages do occur: in 2007 an International En-
ergy Agency (IEA) survey found array availability of 99.5%
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and 95.5% for PV arrays built in 2003 and 1995, respec-
tively [1].

Current ad-hocmethods of fault detection result in lengthy
repairs and decreased array availability. In [2], the mean time
to repair (MTTR) of several PV systems was calculated and
no array achieved a MTTR of less than 19 days. A MTTR
of 3.3 days is given in [3] for a large-scale PV array located
in Japan; this is noted as an extremely short time. If PV is to
become a significant part of world energy production, more
effective monitoring is clearly needed to ensure reliability
and a fast and highly reliable method of detecting faults in
PV arrays is needed.

Several attempts have been made to automate fault detec-
tion in PV arrays. In [4] an ad-hoc method is presented which
detects faults based on lower-than-expected string currents or
sudden drops in one string’s current. In [5], the expected be-
havior of the array is calculated based on current environmen-
tal conditions and compared against measured output. Finally,
in [6] analysis of variance (ANOVA) and the Kruskal-Wallis
test are used to locate faults to within one sub-array of a large
array connected to multiple inverters. Despite these efforts,
to the best of our knowledge, our work [7, 8] is the only fault
detection technique in the literature which can detect faults in
individual modules using robust clustering algorithms.

This paper is organized as follows: Section 2 briefly de-
scribes the electrical behavior of PV arrays. The problem of
PV array fault detection is described in Section 3 and sev-
eral types of commonly occurring faults are described along
with their effect on array performance. The MCD-based fault
detection algorithm is presented in Section 4 and its perfor-
mance in detection of simulated ground and arc faults is de-
scribed in Section 5.

2. BRIEF OVERVIEW OF PHOTOVOLTAICS

Fig. 1 shows the single-diode model, a simple and commonly
used representation of a PV cell, module, or array [9]. As
with a diode, the behavior of this circuit may be summarized
by its current-voltage (I-V) characteristic. Fig. 2 shows the
simulated I-V and power-voltage (P-V) curves of a Sharp NT-
175UC1 PVmodule at standard test conditions (STC) of 1000
W/m2 solar irradiance and 25 ◦C cell temperature. Note that
the module achieves its maximum power output at 35.4 V and
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Fig. 1. Single-diode model of a PV cell.

Fig. 2. I-V and P-V curves of Sharp NT-175UC1 module at STC.

4.95 A, achieved when the module is connected to a load of
7.15 Ω. This is known as the maximum power point (MPP)
of a PV cell, module, or array. Modern inverters dynamically
adjust the load they present to the array in order to maintain
operation at the MPP, a process known as maximum power
point tracking.

The component values of the single-diode model vary
with environmental conditions, most notably temperature and
solar irradiance. Light-generated current IL is almost per-
fectly proportional to solar irradiance and is modeled as such.
Temperature primarily affects the operation of the diode: ID

increases with increasing temperature, reducing the power
output of the cell. Bypass diodes (not shown) are generally
connected across several PV cells; this diode conducts large
currents when the cell is reverse biased (Vcell < 0), effec-
tively bending the I-V curve upward at negative voltages and
minimizing power dissipation and heating of the cell.

PV modules generally consist of many cells connected in
series strings, with strings occasionally connected in paral-
lel to increase current output. A similar connection scheme
is used to form arrays, with series strings of modules con-
nected in parallel to achieve the desired voltage and current.
Larger arrays are divided into sub-arrays, with each sub-array
feeding a different inverter. When all modules in an array
are perfectly electrically matched, available array power is
simply the power of each module multiplied by the number
of modules and the entire array’s I-V characteristic can be
adequately represented by the single-diode model in Fig. 1.

Fig. 3. Operating points of an array under ground fault conditions.

However, when mismatch between modules exists, this is no
longer accurate, and array maximum power may not be the
sum of individual module maximum powers. Such mismatch
is often due to a fault in the array.

3. PROBLEM STATEMENT

Several conditions impair the performance of PV arrays, in-
cluding partial shading, module soiling, inverter failure, and
mismatch due to variation in manufacturing or aging of PV
modules. In general, faults result in a characteristic pattern
in which the faulty module(s) form a cluster in I-V space,
while the rest of the string in which the fault occurs forms
another cluster, and the remaining unaffected modules in the
other strings form a third cluster. This paper focuses on the
detection of ground and arc faults.

3.1. Ground Fault
A ground fault occurs when a PV array develops an uninten-
tional low-resistance path to ground, such as when wire insu-
lation is compromised, leaving it in contact with adjacent con-
ductors. This shorts one or more modules in a string, leaving
the rest of the modules to make up the difference in voltage.
The overall effect is demonstrated in Fig. 3.

3.2. Arc Fault
An arc fault is the unintended flow of current through air or
another dielectric. Arc faults are generally divided into two
categories: series and parallel arcs. A series arc occurs when
a short break is created in a conductor, such as when a con-
nector pulls apart due to aging or thermal stress. A parallel
arc occurs when two conductors of widely differing voltage
are placed near one another, for instance when the insulation
on a cable running over a steel frame is compromised. The
current through a series arc is generally limited by the circuit
with which it is in series, while a parallel arc can theoretically
consume as much power as a source is able to supply. Fig. 4
shows the effect of a small (5 V) series arc within a module.
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Fig. 4. Operating points of an array under series arc fault conditions.

This low-voltage arc causes only the faulty module to appear
as an outlier in I-V space. However, larger arcs affect the en-
tire string in which the arc occurs, just as in the ground fault
case.

Several models exist which attempt to describe the behav-
ior of an electric arc. One extremely simple approach is the
Cassie model, which describes an arc as a time-varying con-
ductancewith constant steady-state voltage . TheMayrmodel
takes a similar approach but assigns an arc a constant steady-
state power dissipation. The Habedank model [10] consists of
Cassie and Mayr arcs in series with one another.

4. ALGORITHM DESCRIPTION

The problem of identifying the presence of a fault in a PV
array may be formulated as an outlier or anomaly detection
problem: the presence of an outlier in I-V data indicates a
fault. A large body of work exists in anomaly detection; how-
ever, the presence of multiple clustered outliers due to PV
faults (e.g. Fig. 3) presents a unique challenge. The algorithm
presented here uses a classical approach to outlier detection,
employing more recent work in robust statistics to overcome
the problem of multiple clustered anomalous observations.

The algorithm accepts pairs of voltage and current mea-
surements from N individual PV modules as input, denoted

xi(t) =
[
Vi(t) Ii(t)

]T
, where 1 ≤ i ≤ N is the index of an

individual module and t is time in seconds. Since values of V
and I change quickly with weather variation, only data from
a single time t is considered in the algorithm; dependence on
t will be omitted from the following discussion. Thus, the in-
put data may be visualized as a set of points in I-V space as in
Figs. 3 and 4. The algorithm is not restricted to 2-dimensional
xi and can easily be adapted to incorporate a wider variety of
measurements, for instance module temperature.

The algorithm computes a test statistic

T (x1, ...,xN ) given by

T (x1, ...,xN ) = max
i

(√
(xi − μ̂x)

T Ĉ−1
x (xi − μ̂x)

)

(1)
in which μ̂x and Ĉx are estimates of sample mean and covari-
ance matrix computed using the MCD estimator. The MCD
(discussed below) identifies the N/2 most tightly clustered
observations from the set of {x1, ...,xN} and uses these val-
ues to estimate μx and Cx. Finally, T (x1, ...,xN ) is com-
pared against a threshold γ and if T (x1, ...,xN ) > γ a fault
is determined to be present. The threshold γ is currently cho-
sen to achieve a desired false alarm rate.

The test statistic was selected to measure the maximum
distance in I-V space between a module and the center of
the modules’ distribution. The distance measure used is a
quadratic distance closely related to the well-known Maha-
lanobis distance, but uses different estimators for the mean
and covariance matrix.

Selection of estimators for μ̂x and Ĉx is non-trivial:
faults in PV arrays often cause the appearance of multiple
clusters of module data in I-V space as in Fig. 3. These
clusters prevent the use of conventional estimators of sample
mean and covariance, since clusters of faulty modules and
strings will mask the characteristics of the non-faulty data.
To combat this masking effect, several robust estimators exist
which discard large numbers of outlying observations and
return estimates only of the cluster to which the majority of
observations belong.

The minimum covariance determinant (MCD) estimator
was used for this purpose. The MCD estimator [11] first de-
termines the subset S ⊂ X = {x1, ...,xN} of h observations
(withN/2 ≤ h ≤ N ) such that the determinant of the sample
covariance matrix |ĈS | is minimized. This step effectively
discards N − h points as outliers; we chose h = N/2 for
maximum robustness. Next, the estimated mean μ̂x = μ̂S

and covariance matrix Ĉx = αĈS are calculated, where

α =
medi

(
(xi − μ̂S)

T Ĉ−1
S (xi − μ̂S)

)
m

(2)

is a consistency factor to correct for non-anomalous points
excluded from S. med is the sample median and m is the
population median of a χ2

2 random variable. This is used
because if xi are 2-dimensional and normally distributed,
(xi − μx)

TC−1
x (xi − μx) will be χ

2
2 distributed. Determin-

ing the exact subset S is prohibitively expensive to compute
for large N . However, the more recent FAST-MCD estima-
tor [11] computes good approximate results with acceptable
complexity.

5. ALGORITHM PERFORMANCE

The performance of the MCD-based algorithm presented in
Section 4 was evaluated using Monte Carlo analysis with
data obtained from SPICE simulations of a PV array under
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Fig. 5. ROC of detector for 5 V series arc fault (Cassie model) .

arc fault conditions. Faults were simulated on an array of
52 Sharp NT-175UC1 PV modules, arranged in 4 parallel-
connected strings of 13 series-connected modules each. This
configuration was chosen because it corresponds to a small
utility-operated array in the vicinity of the ASU campus on
which a prototype monitoring system has been installed. The
PV module performance model given in [9] was used to cal-
culate the SPICE circuit parameters for operation at standard
test conditions (STC).

The metric used to evaluate algorithm performance was
the Receiver Operating Characteristic (ROC), which quanti-
fies the trade-off between sensitivity and specificity in a de-
tector. The x-axis plots the probability of false alarm, while
the y-axis plots probability of detection. Simulations were
performed under the assumption of additive Gaussian mea-
surement noise of variance 0.13 V2 and 0.0025A2 for voltage
and current, respectively; these values correspond to a stan-
dard deviation of 1% of the true (noiseless) value. Errors in
voltage and current measurement were assumed to be inde-
pendent of one another; in measurements from the prototype
monitoring system this appears to be the case.

Series arc fault simulation was performed using the Cassie
arc model for steady-state arc voltage of 5 V, corresponding
to a relatively small arc, but one which is fully capable of de-
stroying a PV module. This is the same arc fault shown in
Fig. 4. Fig. 5 shows the ROC of the MCD-based detector
operating on this arc fault at STC. It can be seen that the de-
tector achieves a detection rate of 98% at a false alarm rate of
only 0.01%.

6. CONCLUSIONS AND FUTUREWORK

The fault detection algorithm presented here promises the
ability to detect a wide range of conditions affecting array
output. The algorithm may be deployed as part of a compre-
hensive monitoring system which improves array efficiency
and availability with a minimum of human operator involve-
ment.

Although the algorithm shows good performance in sim-
ulations, several opportunities for improvement exist. First,

the sampling period of the monitoring system may be in-
creased so that voltages and currents may be treated as quasi-
stationary. The algorithm may then be altered to consider
data over a short time window rather than a single snapshot.
Another approach is to incorporate measurements of irradi-
ance and/or module temperature in predicting array output.
A graphical user interface (GUI) for PV array fault detec-
tion and monitoring has been developed by SenSIP Center
researchers in MATLAB [12] and an online GUI is also being
developed in Java-DSP [13, 14].
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