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ABSTRACT 

 
In this paper, we present a non-intrusive lie detection system 
based on thermal imaging technologies. The system consists 
of the following modules: thermal camera, face detection 
and tracking, face landmark detection, feature extraction, 
and pattern recognition for concealed knowledge inference. 
We have discovered the most sensitive areas on the human 
face to monitor facial temperature changes. Detection 
algorithms are then developed to identify concealed 
knowledge from thermal imaging automatically. Face 
landmark tracking is used directly on the thermal video 
images to detect regions of interest (ROI) and extract 
features for concealed knowledge inference. We achieved an 
equal error rate (EER) of 16.5% in concealed knowledge 
recognition for 16 subjects on test data. Our non-contact 
method of concealed knowledge detection using thermal 
data achieves similar or better recognition accuracy as 
traditional intrusive methods, such as polygraph or EEG. 
 

Index Terms—Thermal imaging, facial landmark 
detection, matched filter, feature extraction, lie detection, 
pattern recognition1. 
 

1. INTRODUCTION 
 
There is a need for identifying, at a distance, subjects 
concealing information at an interrogation, without the 
encumbrances of attaching the subject to equipment. For 
example, at border customs, it would be desirable to quickly 
determine if the subject interviewed is answering questions 
truthfully. The standard polygraph procedure includes 
measuring the scalar physiological parameters of blood 
volume and pulse changes, respiratory changes and electro 
dermal activities [1] that require the placement of electrodes 
and sensors on the participant. Functional magnetic 
resonance imaging studies (fMRI) [8] have shown that 
intended lies are correlated with increased brain activity in 
the prefrontal region. In another paradigm, Rosenfeld [2, 7] 
has demonstrated that a specific event-related potential 
(ERP) component, the P300, can be used to detect 
deception. Lately, functional near-infrared (fNIR) imaging 
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has also emerged as a new way to image brain activity. 
Although fMRI and ERP measure brain activity, their 
dependence on sophisticated equipment and trained 
technicians limits their application in applied settings such 
as border control. New procedures and techniques have to 
be invented for this type of application.  
 
 There are several obvious potential advantages of 
facial thermography including the possibility of detecting 
and identifying deception from a distance in real time. 
Pavlidis and Levine [6] provided encouraging results when 
they studied temperature changes in the eye region as an 
indicator of emotional state changes. In our research, we 
examined the following: (1) how the thermal images of the 
human face are related to brain activity during a deception 
paradigm that has been used to elicit ERP responses; (2) 
what features of facial thermography (i.e., spatial and 
temporal components) are most sensitive to this paradigm; 
(3) what the limitations and precision of these features are; 
and (4) how to design an effective concealed knowledge 
detection system based on our research. 

Fig 1: The EEG and thermal data from a subject that is concealing 
knowledge (subject instructed to conceal prior interaction with 
object): (A) The EEG data shows an average signal calculated over 
the subject’s EEG signal, which shows a clear depiction of the 
P300 signal within the first second.  (B) The thermal data shows a 
rise and return in temperature between the 3rd and 4th second (our 
signature of concealed knowledge).  
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2. DATA COLLECTION 
 
2.1. Simulation of Guilt 
Data were collected to compare the effectiveness of a 
thermal camera at detecting guilty knowledge and deception 
with an Event Related Potential (ERP) system and a Guilty 
Knowledge Test (GKT) [2]. In order to simulate guilt, the 
subjects were instructed to commit a mock crime (stealing a 
ring) before their arrival at the lab, prior to data collection. 
During the data collection sessions the subjects were 
questioned about the detail of this mock crime in an attempt 
to ascertain their guilty knowledge and detect their attempt 
to conceal information about the mock crime committed. 
 On returning from committing the mock crime, the 
subjects immediately participated in two data acquisitions 
sessions. The data collection was counter-balanced, with one 
half of the subjects first undergoing the GKT polygraph and 
the other half undergoing an electroencephalograph (EEG) 
and simultaneously recorded by a thermal camera. The 
subjects were then subjected to the other equipment on 
completion of the first data collection session. The EEG 
results were used to label thermal images for training for lie 
pattern recognition.  
 
2.2. The EEG Protocol 
The EEG protocol, designed by Dr. J. P. Rosenfeld of 
Northwestern University, consists of six stimuli: one Probe 
(ring), four Irrelevants (necklace, locket, earring, cufflink), 
and one Target (watch). Subjects were instructed to answer 
“yes” or “no” by clicking a given button on a mouse in 
response to each stimulus. They were told to answer “yes” to 
the word “watch” because it is their target, and responding 
“yes” means they recognize it. This forces the subject to pay 
attention to the stimuli as they are presented. They were then 
told to answer “no” to the remaining stimuli, meaning that 
they did not steal these items.  So that when they answered 
“no” to the critical probe item, they would be lying. Each 
subject’s face was recorded on video using the thermal 
camera during the test.  
 The test dataset consists of data derived from 16 
subjects. The inter stimulus time (ISI) was 5 seconds after 
staggered data collection trials to allow adequate time for 
autonomous nervous system (ANS) responses such as 
thermal changes in the skin surface to be visible to non-
invasive data acquisition systems. 

 
2.3. Thermal Data 
Our method of discovering concealed knowledge is based on 
the detection of the effort to conceal information from 
fluctuations in the subject's skin temperature. We use a 

thermal video camera to capture the dynamic skin 
temperature changes. Fig. 2 shows two frames from one of 
the thermal videos that make up our database of subject 
videos. The facial landmarks of interest, as noted, are: the 
inner and outer edges of the eyes, the outer edges of the 
nostrils, the tip of the nose and the outer edges of the mouth.   

Fig 2: Still frames of the recorded thermal video with 
landmarks (highlighted) tracked through head poses.  

 
 Once the face has been detected based on the color 
difference between the subject's warm face as opposed to  
the cooler background we locate predefined landmarks on 
the subject's face, as shown in Fig. 2. Knowledge of these 
landmarks allows us to calculate the dimensions of the face 
and easily locate other features on the face. The data were 
processed with an algorithm to detect the landmarks directly 
using thermal images and track the landmarks through 
normal head motions [4], Fig. 2. The incorporation of 
dynamic information through Kalman filtering, and the face 
shape constraint through Active Shape Model (ASM) [3, 4] 
was explored. The tracking algorithm on the thermal video is 
important to ensure we can measure the temperature changes 
on the same point on the face.  
 

3. METHODS 
 
The thrust of our research was to identify the relevant 
regions of the face where the temperature signature is most 
informative of the subject's effort to conceal information 
when confronted with the Probe stimuli.   

 
3.1. Thermal Feature Selection 
The region of interest (ROI) is a window (50x100, height x 
width) including both tear ducts. For every frame we 
computed the mean temperature of the 10% hottest pixels 
from this region, which represents the mean temperature 
changes of the vasculature in the inner corners of the two 
eyes. This correlates with the portion of the inner eye region 
that has the highest blood flow rate, which explains why it is 
the hottest region from the experimental investigation [5]. In 
addition, this larger region can minimize the effects when 
tear duct tracking is not accurate. Fig. 3 shows some typical 
examples of the thermal signal in 5 seconds for the probe 
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and irrelevant stimuli. Each 5 seconds of measured 
temperature traces were mean normalized prior to further 
processing.  

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-0.05

0

0.05

Time (sec)

Li
e 

sa
m

pl
es

Sample of thermal signals for lie and non-lie events

 

 
Lie sample 1

Lie sample 2

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-0.05

0

0.05

Time (sec)

N
on

-li
e 

sa
m

pl
es

 

 
Non-lie sample 1

Non-lie sample 2

 
Fig  3: Sample of thermal signal for stimuli of lie and others: The 
upper figure shows the probe (lie) signals and the lower figure 
shows the Iirrelevant (non-lie) signals from the same subject.  The 
P-thermal patterns are obvious from the upper figure; for the same 
subject, the delay for each stimulus is different.  
 
3.2  Matched Filter for Lie Event Detection 
As described above, we discovered the P-Thermal pattern in 
the thermal signals in lie events. To detect this P-Thermal 
pattern more clearly and robustly, we designed a matched 
filter to detect the lie event. 
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Fig 4: Passing thermal signal through matched filter: the upper is 
the designed matched filter and the lower is the comparison of 
thermal signals before and after matched filter. 
 
 For any measured thermal data, we conducted a 
convolution with the matched filter. Fig. 4-A shows the 
matched filter and Fig. 4-B shows the comparison of thermal 
temperature signal before and after passing through matched 
filter. As can be seen from this figure, the matched filter 
identifies the P-Thermal pattern. 

3.3 Bootstrapped Amplitude Comparison 
To determine whether the amplitude of the P-Thermal 
pattern evoked by probe stimuli is significantly higher than 
those that are evoked by an irrelevant within an individual or 
across individuals, we used the bootstrapped amplitude 
comparison (BAC) method. The BAC method is as follows: 
a computer program goes through the probe set and selects 
at random, with replacement, a set of N single sweeps. It 
averages these waveforms and calculates the maximum P-
Thermal amplitude (Pm) from this average. Similarly a set 
of N single sweeps is selected from the irrelevant set and the 
maximum of P-Thermal amplitude (Im) is calculated from 
them. A decision can be made if the difference between 
these two maximum values (Pm-Im) is larger than the 
threshold. Here, the N value we selected is 20. Of course, a 
small number means a shorter testing time. We ran the 
bootstrapping test 100 times and calculated the maximum 
values for Pm and Im for every test.  
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Fig 5: Bootstrapped amplitude comparison for Probe, Target and 
Irrelevant stimuli; each category has 20 randomly selected sweeps. 
 
 Fig. 5 shows BAC of the stimuli (Probe, Target and 
Irrelevant). For each set we selected 20 random sweeps. 
From this example, we can see the maximum bootstrapped 
P-Thermal amplitude is much higher than the amplitude 
from the irrelevant set and even the target set.  
 

4. EXPERIMENTS AND RESULTS 
 
For each subject, we computed 100 Pm and 100 Im values. 
Fig 6 shows the false accept rate (FAR) and false reject rate 
(FRR) curves with changing threshold for a representative 
subject. We observe FAR decreases with the increase of 
threshold while FRR increases. For this subject, the equal 
error rate (EER) reaches 0.165 at a threshold value of 0.19, 
which means the correct lie classification reaches 83.5% if 
we select this threshold. 
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Fig 6: Plotting FAR and FRR with changing threshold. 

 Table 1 shows the EER for all subjects when we 
select 20 stimuli repeats in the BAC method. Fig. 7 shows 
the corresponding ROC curve. From Table 1 and Fig. 13, we 
can see the maximum EER is 0.485 and the minimum EER 
is 0.165, which means the lowest correct lie detection rate is 
51.5% and the highest correct lie detection rate can reach 
83.5%. This is a very promising result and indicates the 
thermal imaging methods described in this paper can be used 
for concealed knowledge detection in real applications. 

 
Table 1: EER calculation for all subjects (20 stimuli repeats) 

Subject Id EER Classification Rate:  
1-EER (%) 

024 0.335 66.5 
025 0.410 59 
026 0.435 56.5 
027 0.21 79 
029 0.38 62 
030 0.33 67 
031 0.43 57 
032 0.45 55 
034 0.41 59 
035 0.405 59.5 
036 0.325 67.5 
037 0.42 58 
038 0.47 53 
039 0.375 62.5 
040 0.165 83.5 
041 0.485 51.5 

 
5. CONCLUSION 

 
From the above experimental results, the use of thermal 
imaging with our matched filter combined with the BAC 
method is a promising new solution for the detection of 
concealed knowledge. The correct classification accuracy 

using 5 second thermal video sequences was as high as 
83.5% in the 16 subjects tested, which compares to 90% 
when using a contact EEG device [2].  
 

 

Fig 7: ROC curve for all subjects 
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