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ABSTRACT

We propose a new method to separate mass spectra into components
of each chemical compound for explosives detection. In mass spec-
tra, all components have no negative values. However, conventional
factor analyses for basis decomposition use no constraints of non-
negativity, and we can not apply these methods to mass spectra.
The proposed method is based on probabilistic latent component
analysis (PLCA). The constraints of non-negativity always hold in
PLCA, so that the method is effective for mass spectra. In addi-
tion, PLCA is defined in a statistical framework, thus PLCA makes
it possible to utilize additional a priori information. Therefore, we
introduce sparseness assumptions in the domain of mass spectrom-
etry to PLCA in order to estimate the components more accurately.
Experimental results indicate that the proposed method outperforms
existing methods.

Index Terms— Mass spectrum analysis, Blind source separa-
tion, Probabilistic latent component analysis, Sparseness assump-
tion, Non-negativity

1. INTRODUCTION

The threat of improvised explosive devices has become a serious
problem for all countries because the procedures and recipes for
making these bombs are freely available on the Internet. To pre-
vent terrorist attacks, we have developed a walkthrough portal ex-
plosives detector that consists of a high-throughput vapor sampling
portal, a high-sensitivity atmospheric pressure chemical ionization
source, and a high-selectivity linear ion trap mass spectrometer [1].
The mass spectrometer measures the intensity corresponded to the
number of ions for each mass-to-charge ratio (m/z). The m/z series
of intensities are called the mass spectrum. The detector observes
the time series of the mass spectra continuously, and it detects char-
acteristic patterns of explosives traces from the mass spectra data.

In the explosives detection system, explosives compounds, other
chemical compounds and the chemical background are mixed with
each other in the mass spectra. It is necessary to separate the spec-
tral components of each compound from the mass spectra. There are
many researches that employ conventional factor analyses for basis
decomposition such as Principal Component Analysis (PCA) [2] and
Independent Component Analysis (ICA) [3, 4]. The components es-
timated by PCA may contain negative values because PCA uses no
constraints of non-negativity. However, the components of the real
mass spectra are non-negative, so that PCA is not effective for mass
spectra. To make matters worse, PCA imposes the orthogonality
constraint. In the explosives detection, some components of differ-

ent compounds are mixed into the same m/z of mass spectra; i.e.,
the orthogonality does not hold in general, and so the performance
of PCA is more degraded. ICA does not make use of constraints of
the orthogonality, but it uses no constraints of non-negativity. Thus,
ICA also suffers from performance degradation in mass spectra. Re-
cently, new approaches called Non-negative Matrix Factorization
(NMF) and Non-negative Independent Component Analysis (NICA)
have been applied to the area of mass spectral imaging [5]. These ap-
proaches have the desirable property that the estimated components
are guaranteed to be non-negative, and the approaches have the ad-
vantage of no distortion caused by the negative values. However, it is
difficult for these methods to utilize other a priori information of the
domain of mass spectrometry because the methods are not defined
in a probabilistic framework.

In this paper, we propose a new mass spectra separation method
for explosives detection. The proposed method uses probabilistic
latent component analysis (PLCA) [6, 7, 8]. By using PLCA, the
proposed method can separate the non-negative components without
assumptions about the orthogonality. Moreover, PLCA is NMF re-
defined in a probabilistic framework, thus PLCA makes it possible
to utilize additional a priori information. Therefore, in order to es-
timate the components accurately, we introduce sparseness assump-
tions of mass spectra to PLCA. Experimental results indicate that the
proposed method outperforms existing methods.

2. PROBLEM STATEMENT

The input signal is the time series of mass spectra x(t,m), where t
is the index of a time, and m is the index of m/z. T is the number of
the time index, and M is the number of the index of m/z. x(t,m) is
modeled as follows,

x(t,m) =

K∑
k=1

ct(k)sk(m), (1)

where k is the index of a compound basis, K is the number of the
kinds of the compounds in the air, ct(k) is the intensity of the k-th
compound in the time index t, and sk(m) is the time-invariant spec-
tral basis component for the k-th compound. Here, we normalize
sk(m) such that

∑M
m=1 |sk(m)|2 = 1.

In this paper, we estimate the unknown variables ct(k) and
sk(m) from the known variables x(t,m). This problem equals to
the blind source separation problem. We must add the following
three constraints of the explosives detection system to this problem.
The first is that sk(m) is non-negative for all compound and m/z
because mass spectra represent the number of ions for each m/z. The
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second is that we can not assume the orthogonality between differ-
ent basis component sk(m) because different components are mixed
into the same m/z in real environments. The third is that the number
of compounds in the air K is unknown because suspected chemical
compounds and the chemical background change depending on the
environment at the time and place.

3. MASS SPECTRA SEPARATION BY USING PLCA

3.1. PLCA model

In this section, we introduce PLCA model. PLCA model consists of
a pair of probabilistic trials:

1. In each time t, the k-th compound is selected in a probability
Pt(k).

2. For the selected compound k, the m-th index of m/z is se-
lected in a probability distribution P (m|k), and a small pos-
itive constant value Δ is voted to the spectral bin (t,m) cor-
responded to x(t,m).

We assume that x(t,m) is generated by voting in these proba-
bilistic trials S(t) times for each time index t, where S(t) =∑M

m=1 x(t,m). Therefore, we can formulate the probability distri-
bution that x(t,m) is generated as follows:

P (x(t,m)∀t,m) =

T∏
t=1

M∏
m=1

{
K∑

k=1

Pt(k)P (m|k)
}x(t,m)

(2)

leading to the log-likelihood

logP (x(t,m)∀t,m)=

T∑
t=1

M∑
m=1

x(t,m) log

K∑
k=1

Pt(k)P (m|k).
(3)

In PLCA model, we can interpret (1) as a event of trials in the prob-
ability distribution of (3). Pt(k) corresponds to ct(k) in (1), and we
call Pt(k) the probabilistic activities. Also, P (m|k) corresponds
to sk(m) in (1), and we call P (m|k) the probabilistic spectral ba-
sis components. Therefore, at first, the estimation process calculates
Pt(k) and P (m|k) that maximize (3), next it calculates ct(k) and
sk(m) from these probabilistic distributions easily. However, we
can not estimate both of Pt(k) and P (m|k) directly because Pt(k)
is needed to estimate P (m|k). We can employ the Expectation-
Maximization (EM) algorithm for maximum likelihood estimation
with missing data such as this problem, as we explain in Section 3.2.
This PLCA-based method solves the problem of non-negativity be-
cause both Pt(k) and P (m|k) are probability variables, and these
are always non-negative. Also, we do not any assumption about the
orthogonality in (3), thus we can estimate the spectral basis compo-
nents that are not orthogonal to each other.

3.2. Solution of PLCA by using sparseness assumptions

Returning back to the constraint that K is an unknown parameter, we
must set K in the estimation process to a sufficiently large number.
However, in this case, the estimation process can lead to an incorrect
solution such that one compound is scattered into Pt(k) and P (m|k)
for multiple bases, consequently, it degrades the accuracy of Pt(k)
and that of P (m|k). In order to estimate the solution accurately, we
introduce three sparseness assumptions of mass spectra as follows:

Sparsity of Pt(k) Only a few compounds k are active in the same
time.

Sparsity of P (m|k) Each spectral basis component consists of
only a few bins on the spectrum.

Sparsity between spectral basis components Spectral basis com-
ponents P (m|k) for different compounds k do not similar to
each other.

In the area of audio and image signal processing, there are some
approaches that use sparseness assumptions very similar to our as-
sumptions of mass spectrometry. The approaches introduce the as-
sumptions as “entropic priors” [6, 8] to PLCA. PLCA has the advan-
tage that it enables to use a priori knowledge of domains like these
methods. We also introduce the assumptions of mass spectra as en-
tropic priors, and solve the estimation problem. We define the cost
function by adding the term of “entropic priors” to (3) as follows:

J ({Pt(k)} , {P (m|k)})

=

T∑
t=1

M∑
m=1

x(t,m) log

K∑
k=1

Pt(k)P (m|k)

−βa

T∑
t=1

H({Pt(k)}k)− βb

K∑
k=1

H({P (m|k)}m)

−βc
∑

k,k′|k �=k′
H({P (m|k)}m ,

{
P (m|k′)

}
m
), (4)

where βa is the parameter of the sparsity of Pt(k), βb is the pa-
rameter of the sparsity of P (m|k), βc is the parameter of the spar-
sity between bases, H({Pi}i) is the α-th order Renyi’s entropy de-
fined as H({Pi}i) = 1

1−α
log

∑
i Pi

α, and H({Pi}i , {Qi}i) is

the cross entropy defined as H({Pi}i , {Qi}i)=−∑
i Pi logQi −∑

i Qi logPi. In (4), the second term corresponds to the sparsity of
Pt(k), third term corresponds to the sparsity of P (m|k), and forth
term corresponds to the sparsity between bases.

By maximizing the cost function J (Pt(k), P (m|k)) in (4), we
obtain the following EM algorithm to estimate Pt(k) and P (m|k):
E step:

Pt(k|m) =
Pt(k)P (m|k)∑K

k′=1 Pt(k′)P (m|k′)
, (5)

M step:

ĉt(k) =

M∑
m=1

x(t,m)Pt(k|m), (6)

Pt(k) =

{ 1
1+

∑
k′ �=1 g(βa,ĉt(k′)) if k = 1,
g(βa,ĉt(k))

1+
∑

k′ �=1 g(βa,ĉt(k′)) otherwise,
(7)

r(m|k) =
T∑

t=1

x(t,m)Pt(k|m)− βc
∑
k′ �=k

P (m|k′), (8)

P (m|k) = g(βb, r(m|k)), (9)

where g(β, γi) is the α-order Renyi’s entropic prior, which can be
calculated by an iteration process as follows:

1. h(i) = βγi +
α

α−1
g(β,γi)

α
∑K

i′=1
g(β,γi′ )α

2. g(β, γi) =
h(i)

∑K
i′=1

h(i′)

3. Return to 1 until convergence.
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Fig. 1. Explosives detector.

(a) Mass spectra x(t,m). X and Y axis show t and m/z .
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(b) Chromatogram (time profile) of around m/z 59. X and Y axis
show t and the intensity I(t) =

∑
m∈[m/z 58, m/z 60] x(t,m).

Fig. 2. Input signal.

We set Pt(k = 1) to the higher value than Pt(k �= 1) in (7) to handle
the component of the stationary chemical background as one basis.
Finally, after the algorithm converges, we can calculate the estimate
ĉt(k) of ct(k) from (6), and also the estimate ŝk(m) of sk(m) can

be calculated by ŝk(m) = P (m|k)
∑M

m=1|P (m|k)|2 .

4. EXPERIMENTAL RESULTS

We evaluated the performance of the proposed method. We used the
device of the walk-through portal explosives detector [1]. to record
the input mass spectra. Some of the authors had developed a proto-
type device as supported by Ministry of Education, Culture, Sports,
Science and Technology, Japan for three years since 2007. Based on
this prototype device, the device of this experiment was developed.
Figure 1 shows a model of the device. We recorded the mass spectra
in a real station to measure the chemical background of real envi-
ronments. We used 3500 mass spectra of about five minutes from
the whole recorded data; i.e., T = 3500, and the number of the m/z
index M was 256. Figure 2 (a) shows the input mass spectra, and
Fig. 2 (b) is the chromatogram (time profile) of around m/z 59. The
chemical background components have stationary peaks at m/z 59,
m/z 62 and m/z 75 (Fig. 2 (a)). In this experiment, an experimenter
passed through the device with Compound 1 (m/z 59) four times in
the former half of the time, and with Compound 2 (m/z 59, m/z 62,
m/z 76 and m/z 77) five times in the latter half of the time. As Fig.
2 (b) shows, the fourth peak of Compound 1 (t = 1600) was small
and it had the same level as those of when Compound 2 was passed

����

����

����

�
�
�
�
�
�

�

����

�	 �� �	 	� 		 ��

�

����	 �� �	 	� 		 �� ���

(a) k = 1 (Chemical
background)
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(b) k = 2 (Compound 1)
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(c) k = 3 (The first basis of
Compound 2)
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(d) k = 4 (The second basis of
Compound 2)

���

���

���

�
�
�
�
�
�

�

���

�	 
� 
	 	� 		 ��

�

����	 
� 
	 	� 		 �� ���

(e) k = 5 (Dummy)
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(f) k = 6 (Dummy)
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(g) k = 7 (Dummy)
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(h) k = 8 (Dummy)

Fig. 3. Estimates of the probabilistic spectral basis components
P (m|k) for each k. X and Y show m/z and P (m|k).

(e.g. t = 1950). From Fig. 2, P (m|z) for each compound k are not
orthogonal to each other obviously. We set the number of bases K
in the estimation process at eight. βa was 0.1, βb was 0.9, βc was
0.5, and the order of Renyi’s entropy α was 1.2.

Figure 3 and 4 show the estimates of P (m|k) and Pt(k). As
Fig. 3 shows, all correct main peaks were estimated for the chem-
ical background, Compound 1 and Compound 2. Also, as Fig. 4
shows, the peaks exist at the correct times when Compound 1 and
Compound 2 were passed. In particular, for Compound 1, the fourth
peak of Pt(k) was obviously higher than Pt(k) of the latter half of
the time (Fig. 4 (b)). These results indicate that the proposed method
works well. However, Compound 2 was separated into two different
bases k = 3 and 4. The sidelobes of the spectral basis component
P (m|k = 3) (Fig. 3 (c)) were broader than those of P (m|k = 4)
(Fig. 3 (d)). According to this feature, we can think that k = 3 and
4 correspond to the saturation state and the non-saturation one. In
this experiment, saturation actually occurred in the mass spectrome-
ter because the amount of Compound 2 was too large. The proposed
method can not handle multiple states such as these two states as one
compound because the method models only one mass spectrum for
each time index, so that the method does not model the time series
structures of mass spectra. This is a future work.

We compared the performance of the proposed method with ex-
isting methods PCA and ICA. The measurements were SNR as fol-
lows:

SNRk,i = 10 log10
maxt∈Ak,i |ĉk(t)|√

1
|Nk|

∑
t∈Nk

|ĉk(t)|2
[dB] , (10)
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(a) k = 1 (Chemical
background)
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(b) k = 2 (Compound 1)
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(c) k = 3 (The first basis of
Compound 2)

�����

� ��

�����

�����

�
�
�
�
�

�����

��	��

�����

����

� 	��� ���� ����

(d) k = 4 (The second basis
of Compound 2)
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(e) k = 5 (Dummy)
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(f) k = 6 (Dummy)
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(g) k = 7 (Dummy)
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(h) k = 8 (Dummy)

Fig. 4. Estimates of the probabilistic activities Pt(k) for each k. X
and Y show t and Pt(k).

where Ak,i was the area around the i-th time when k is passed
through the device, and Nk is the non-active time area; i.e., Nk=1

was [2000, 3500], and Nk=2 was [0, 1500]. In Table 1, the per-
formance of the proposed method was higher than that of the other
methods. In relation to the results, we show the spectral basis com-
ponents for Compound 1 estimated by PCA and ICA in Fig. 5. We
compare Fig. 5 with Fig. 3 (b). The existing methods estimate the
spectral basis components without constraints of non-negativity, and
so the estimates of the spectral basis components have both a neg-
ative peak and a positive peak. In contrast, the proposed method
can estimate the spectral bases accurately by using the constraint of
non-negativity. From these results, we think that the reasons for the
high performance of the proposed methods are the constraint of non-
negativity and no assumptions about the orthogonality.
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Fig. 5. Estimates of the spectral basis components ŝk(m) for Com-
pound 1 (k = 2) of PCA and ICA. X axis shows m/z. Y axis shows
the estimated s(m|k).

Table 1. SNRk,i[dB] for each method. “PLCA” means the proposed
method.

Trial of pass-through Method

k i PLCA PCA ICA

k = 2 1 19.4 11.8 13.0
(Compound 1) 2 15.0 7.75 9.35

3 21.0 13.0 14.4
4 13.2 6.19 7.23

k = 3 1 25.5 8.05 16.0
(Compound 2) 2 26.3 8.35 16.5

3 27.2 8.09 16.6
4 26.2 7.97 16.3
5 26.9 8.12 16.2

5. CONCLUSION

We proposed a new method to separate mass spectra into compo-
nents of each chemical compound for explosives detection. The
proposed method is based on PLCA. By using PLCA, the proposed
method can separate the non-negative components without assump-
tions about the orthogonality. In addition, making use of the advan-
tage that PLCA is defined in a probabilistic framework, we intro-
duced sparseness assumptions in the domain of mass spectrometry
to PLCA so as to estimate the solution more accurately. In the ex-
periment using the data in a real environment, it was shown that the
proposed method outperforms other conventional methods.
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