
SCHEDULING OF DYNAMIC DATAFLOW PROGRAMS BASED ON STATE SPACE
ANALYSIS

Johan Ersfolk1,3, Ghislain Roquier2, Johan Lilius1, Marco Mattavelli2

1Åbo Akademi University, Finland
2École Polytechnique Fédérale de Lausanne, Switzerland

3Turku Centre for Computer Science, Finland

ABSTRACT
Compile-time scheduling of dynamic dataflow programs is

still an open problem. This paper presents how scheduling

of dynamic portions of asynchronous dataflow networks de-

scribed using CAL language can be determined before execu-

tion by the analysis of the state space of network partitions.

Experiments show that the number of run-time operations em-

ployed by dynamic schedulers is largely reduced when the

schedules extracted by the state analysis are employed.

Index Terms— Dataflow programming, model checking,

MPEG-4 decoder

1. INTRODUCTION

Quasi-static scheduling of network partitions has been pro-

posed for the scheduling of dynamic dataflow programs [1,

2]. In dynamic dataflow programs, scheduling decisions are

determined at run-time which introduce a significant over-

head. Quasi-static scheduling intends to make most of the

scheduling decisions at compile-time by determining most

of the schedule statically while leaving only the necessary

scheduling decision for run-time. The main benefit is that

the run-time scheduling overheads can be reduced whereas

the programming languages used maintain a high level of ex-

pressiveness to naturally and efficiently specify dynamic be-

haviors of algorithms.

Dynamic behavior appears in most applications. In a

video decoder, for instance, the operations to be performed

depend on the type of data that flows through the program.

The behavior of an actor in a dataflow network may depend

on its current and previous input values as well as its internal

state, making scheduling a run-time problem. However, the

idea pursued here is that when a network partition including

several actors is analyzed as a whole, most of the checks

required to execute a single actor becomes redundant. This is

what is usually done by analyzing token rates and applying it

to static dataflow network sections, however, the formal de-

scription of an actor network behavior provided by CAL [3]

language lets us go beyond token rate analysis and enables us

to explore the whole state space of the network partition.

This paper presents how such analysis can yield sched-

ules that well represents the execution of dynamic portions of

dataflow networks specified using CAL. The scheduling ap-

proach uses a model checker to analyze the state space of a

CAL sub-network, the CAL sub-network is converted to an

equivalent Promela program and analyzed using the SPIN [4]

model checker, identifying deterministic schedules that link

recurring network execution states. Therefore, the only dy-

namic operations that the scheduler needs to execute at run-

time are the guard evaluations between states linked by the

obtained deterministic schedules.

In this paper we describe a method that extract informa-

tion from a CAL program so that a model checker can gener-

ate an appropriate model that can be use to find deterministic

schedules.

2. BACKGROUND AND RELATED WORK

A CAL program consist of a set of actors exchanging data to-

kens by unidirectional order preserving channels virtually of

infinite size (i.e. FIFOs). The actors execute the program by

firing eligible actions. An action is eligible if: 1. tokens are

available 2. its guard expression (including any state predi-

cate) evaluates to true, and 3. it is enabled by the action sched-

uler 4. it has a higher priority if more actions are enabled by

the action scheduler in that state. The action scheduler opera-

tor, if used, express, in the form of finite state machine (FSM)

transitions, the actor behavior in terms of action eligibility.

An action is only fired if the current state has a transition cor-

responding to that action. Each action may consume and/or

produce tokens from one or more input or output port con-

nected to the FIFO channels (an action may also have no input

or output). A subset of CAL [3], named RVC-CAL, has been

standardized by ISO/IEC MPEG [5, 6]. In MPEG a video de-

coder is described by a network configuration of RVC-CAL

actors instantiated from a standardized actor library.

Other types of approaches trying to schedule CAL net-

works more efficiently exist. In [7] CAL actors are classified

to determine the Model of Computation (MoC) an actor be-

longs to. By using abstract interpretation and static analysis

1661978-1-4673-0046-9/12/$26.00 ©2012 IEEE ICASSP 2012

of the CAL program, it is possible to identify if the actor

can be classified to belong to synchronous dataflow (SDF),

cyclo-static dataflow or parameterized dataflow, which can

be scheduled more efficiently. Another interesting approach

which is presented in [2], automatically detects statically

schedulable regions within CAL programs. This approach

finds SDF like regions that can be statically scheduled while

leaving dynamic parts for the run-time scheduler. In [8]

and [9], CAL networks are scheduled for given groups of

input values associated with a control token. While [8] uses

a model checker to extract schedules, [9] uses dynamic code

analysis which identifies static schedules for the different val-

ues of the control tokens passing through the network. In this

paper we improve the approach presented in [8] by defining

which information is relevant for scheduling and defines the

state of the dataflow network. Whereas in [8] we only could

assure that a check on the value of an actors input port could

be omitted in a number of special cases, we can now omit

any such check, however, for some cases this might result in

a very large number of schedules.

3. STATE SPACE ANALYSIS

The scheduling approach described here uses a model checker

to analyze the state space of a CAL sub-network. The CAL

sub-network is converted to an equivalent Promela program

and analyzed using the SPIN model checker identifying de-

terministic schedules. A more detailed description of how the

Promela program is constructed is available in [8], we will

here only concentrate on how the appropriate information is

collected and used to generate schedules.

The deterministic schedules to be generated can be de-

scribed as lists of action firings where the appropriate list is

chosen depending on a condition that must be checked at run-

time. The information that must be used to yield schedules

that behave correctly at run-time includes the current state of

the dataflow network as well as conditions regarding the in-

puts to the network. As the state space of a typical CAL pro-

gram, such as a video decoder, is very large, only the infor-

mation relevant to the scheduling should be considered in the

model, whereas other data should only be seen as valueless

tokens. To achieve this objective, the program representation

must be analyzed to extract only the relevant information that

must be included in the derived Promela program.

3.1. Extracting Scheduling Related Information

For the scheduling of a single actor, the information needed

is the state of the actor’s FSM and the values of any variable

or input port used in a guard. When we schedule a network of

actors, the goal is to avoid unnecessary checks of input values

to individual actors. Instead we analyze how control tokens

propagate through the network and identify every variable re-

lated to generating such values. These variables will be part

of the network state used in the model checker as they clearly

affect the scheduling.

The first step in the analysis is to describe the dependen-

cies between variables in the program. This can be described

as a binary relation, R ⊆ V × V , which is a subset of all the

possible pairs of variables in the actor such that (x, y) ∈ R
indicates that variable x depends on variable y. Building such

a relation at compile-time is simple as we need to read each

instruction only once. Furthermore, variables are not consid-

ered to depend on the guard expression of the action in which

the variable is assigned, the reason for this is that the guard

is part of the scheduling of the actor and not of the data flow

through the actor. If-statements and loops, on the other hand,

are considered to be part of the variable dependencies as these

are not visible on the scheduling of an actor, but only affect

the values written to variables and ports.

This analysis has been implemented in the Orcc com-

piler [10], which means that we work with the intermediate

representation (IR) of this compiler. What is relevant for this

discussion is the that actions consist of assignments, loops

and if-statements. Actions have local variables which can

read or write global variables using load and store instruc-

tions; only the global variables keep their value between

action firings. The local variables are not important for the

analysis, but are only part of the chain of variables that link

the global variables together. Building R from such instruc-

tions is trivial. Load and store instructions and assignments

have a left hand side consisting of a variable and a right hand

side which is an expression. The variable on the left hand

side depends on each variable on the right hand side; for each

variable on the right hand side we therefore add one variable

relation. If an instruction resides in a block belonging to a if

or while statement, it will also depend on each variable used

in the condition.

The compiler is used to produce the following information

regarding variables and ports. We have both global and local

variables, V ≡ Vg ∪ Vl , and input and output ports, P ≡
Pi ∪Po. Furthermore, as some global variables correspond to

ports we have P ⊆ Vg . By looking at the relation R which

describes how variables depend on each other we can find

some basic properties of the variables.

An output port p ∈ Po depends on an input port q ∈ Pi if

(p, q) ∈ R+ (where R+ is the transitive closure of R). From

the scheduling point of view, we are interested in finding the

variables that will have an effect on scheduling, also outside

the actor in which the variable exist. For this, the first step

is to find the input ports used by guards, Pig ⊆ Pi. The

next step is to find the output port which is connected to this

input port, and add {y ∈ VG|(x, y) ∈ R+ ∧ x ∈ Pog} to the

variables relevant for scheduling VS ⊆ V . If we find that any

of these variables corresponds to an input port, this input port

is also regarded as a guarded port and added to Pig . Finally,

when every guarded input port has been analyzed, the set of

variables needed for scheduling is known.

1662

seqBTYPE

A

B

C
dcpred

A

B

C

BTYPE

QP

IN

OUT

PTR

QUANT

SIGNED

START

dcsplitIN
DC

AC

zzaddrSTART ADDR
zigzag

START

ADDR

AC

OUT

acpredSTART

AC

PTR

OUT

dequant

AC

DC

QP

OUTBTYPE

data

QP

out

signed

Fig. 1. The acdc network of a RVC-CAL MPEG-4 decoder.

As an example, consider the sub-network in Figure 1. The

input ports named BTYPE and START are the ports which are

used in guards (belongs to Pig) in their corresponding actors.

The only output port connected to any of these is the START
output of dcpred, for which we then check R+ for dependen-

cies. As a result, we find the variables in dcpred used to gen-

erate the START output, we also find (in this specific network)

that START depends on BTYPE.

The next step is to use a model checker to find paths be-

tween known states of the program. The output from this

analysis gives us the variables that must be described by these

states in order to generate correct schedules. It also gives

us information about the potential complexity of the vari-

ables, i.e. the number of possible states of those variables.

For example, variable x ∈ VS has a cyclic dependency if

(x, x) ∈ R+. This means that the variable depends on itself

and typically is a counter. If the variable also depend on any

input port, ∃y (y ∈ Pi ∧ (x, y) ∈ R+), the variable is likely

to have many states, which might indicate that the guard de-

pending on this variable should be resolved at run-time.

4. SCHEDULING WITH A MODEL CHECKER

Model checkers are typically used to verify that a system

meets its specifications by defining particular properties that

should hold for the system. The model checker searches the

state space, and if it finds that one of the specified properties

does not hold, it will provide a counterexample, i.e. a state

that violates the property.

In the model checker generated from a CAL program,

a state is represented by the state variables in VS , the FSM

states and the tokens on the queues in the network; a transi-

tion from one state to another corresponds to firing an action

in the CAL program. We can therefore initialize the model

checker to a specific state and check if a second state is reach-

able from the first state; if the second state is reachable, then,

there exists a sequence of action firings that will result in the

second state for the CAL program. In other words, there is a

deterministic schedule between the two states.

Finding a sequence of transitions between two specific

states in the model checker generated from the CAL program,

involves checking conditions representing the guards of the

actions. The obtained sequence, however, is a deterministic

schedule which is always valid when the network is in the

specific state and the correct input is available. For this rea-

s0 s1

NVOP

OTHER

INTRA

INTER

INTRA

INTER

NVOP

OTHER

Fig. 2. Scheduler finite state machine

son the scheduler must keep track of the state of the network

in order to choose a valid schedule. As a consequence, the

scheduler often becomes a state machine, which for a spe-

cific input chooses different schedules depending on the cur-

rent state of the network. The current state is in the model

checker described by the current value of the variables in VS ,

the current state of the actor FSMs, and the state of the FI-

FOs connecting the actors. In the generated model, the only

missing information is the input to the network. In this paper

we will consider the set of possible inputs to be known and

concentrate on scheduling these correctly.

The actual scheduling problem is to find a known state

from the current state consuming the given input. To begin

with, the only known state is the initial state, while new states

are added when no known state can be reached. The goal is to

generate a scheduler that can be described as an FSM, such as

the example scheduler in Figure 2. This particular scheduler,

which was generated for the network in Figure 1, accepts four

different input block types and has two states, making it eight

schedules. The two states of the scheduler corresponds to the

initial state of the network and to one other state where either

some variables, FSM states or FIFOs does not have the same

value as in the initial state.

For every new state of the scheduler, the model is set to the

corresponding network state and each possible input is placed

on the input queues of the model to check if any known state is

reachable from the current state. To make the model checker

search for a specific state, the state is added as a specification

of the model to be checked. One possibility is to describe this

specification using linear temporal logic (ltl), and we should

note that we actually should state that this property should

never hold as model checkers are designed to search for un-

wanted behavior. We can, for example, use the always opera-

tor to specify that every state should be such that if the input

has been consumed (I0), the state is not the initial state S0,

this would be expressed as �¬(S0 ∧ I0).

1663

parserBITS

MV

BTYPE

B

ACDC

BTYPE

QFS

F

SIGNED

IDCT2D

F

SIGNED

f

motion

MV

BTYPE

TEX

VIDIN VID

Fig. 3. The MPEG-4 Simple Profile decoder

If no known state is reachable, a new state needs to be

introduced. The new state can be any reachable state where

the inputs has been consumed, one possibility is to run the

model checker in simulation mode to get a hint of how the

network behaves and based on this information describe the

new state.

5. RESULTS

In this case study we experiment the quasi-static scheduling

technique of an MPEG-4 Simple Profile decoder. Figure 3

illustrates the top-level view of the decoder. The quasi-static

scheduling is applied separately on the acdc sub-network, the

idct2d sub-network and the motion sub-network. The model

checker outputs 8 schedules for acdc, 1 schedule for idct and

13 schedules for motion.

Table 1 shows the number of checks (conditional state-

ments) that are executed at run-time on the whole sequence.

In this experiment, there is one check when an action is tested

for execution (availability of input tokens and guards). The

total number of checks is divided by 8 when using the quasi-

static scheduling.

of checks Scheduling

Dynamic Quasi-static

acdc only 129.4× 106 0.8× 106

idct only 189.4× 106 0.1× 106

motion only 9.4× 106 0.9× 106

parser only 53.1× 106 51.9× 106

total 381.3× 106 53.7× 106

Table 1. Number of checks for the MPEG-4 SP decoder.

The second experiment consists in comparing the perfor-

mance of the decoder with a dynamic scheduler and with a

quasi-static scheduler for the acdc and idct and motion sub-

networks. Table 2 shows the run-time performance of the de-

coder with and without the static schedules from the model

checker. The speed-up of the overall execution is about 29%

by using the quasi-static scheduling technique compared to

the dynamic version.

scheduling Dynamic Quasi-static

frame rate (fps) 91 118

Table 2. Frame rate of the MPEG-4 SP decoder

6. CONCLUSION

This paper presented a method for quasi-static scheduling of

dynamic dataflow programs using a state-based scheduling

technique. Experiments show that the quasi-static scheduling

technique helps to reduce the run-time overhead of the tar-

get application and consequently increase its run-time perfor-

mance. This method used in conjunction with other compile-

time scheduling techniques can significantly improve the per-

formance of dynamic dataflow programs, closing up the gap

with existing optimized software implementations.

7. REFERENCES

[1] Jani Boutellier, Christophe Lucarz, Sébastien Lafond,

Victor Gomez, and Marco Mattavelli, “Quasi-static

scheduling of cal actor networks for reconfigurable

video coding,” Journal of Signal Processing Systems,

2009.

[2] R. Gu, J. Janneck, M. Raulet, and S. Bhattacharyya,

“Exploiting statically schedulable regions in dataflow

programs,” Journal of Signal Processing Systems, vol.

63, pp. 129–142, 2011.

[3] J. Eker and J. Janneck, “CAL Language Report,” Tech.

Rep. ERL Technical Memo UCB/ERL M03/48, Univer-

sity of California at Berkeley, Dec. 2003.

[4] Gerard Holzmann, Spin model checker, the: primer and
reference manual, Addison-Wesley Professional, first

edition, 2003.

[5] ISO/IEC 23001-4:2009, “Information technology -

MPEG systems technologies - Part 4: Codec configu-

ration representation,” 2009.

[6] Marco Mattavelli, Ihab Amer, and Mickael Raulet, “The

reconfigurable video coding standard,” IEEE Signal
Processing Magazine, vol. 27, no. 3, pp. 157–167, 2010.

[7] Matthieu Wipliez and Mickal Raulet, “Classification

and transformation of dynamic dataflow programs,” in

DASIP ’10, 2010.

[8] Johan Ersfolk, Ghislain Roquier, Fareed Jokhio, Johan

Lilius, and Marco Mattavelli, “Scheduling of dynamic

dataflow programs with model checking,” in IEEE
International Workshop on Signal Processing Systems
(SiPS), 2011.

[9] Jani Boutellier, Olli Silvén, and Mickaël Raulet,

“Scheduling of cal actor networks based on dynamic

code analysis,” in ICASSP, 2011, pp. 1609–1612.

[10] Matthieu Wipliez, Ghislain Roquier, and Jean-François

Nezan, “Software code generation for the rvc-cal lan-

guage,” Journal of Signal Processing Systems, 2009.

1664

