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ABSTRACT 

A compact implementation of a foreground segmentation processor 
in a multi-resolution transform domain has been proposed for 
HDTV signals. The proposed architecture is designed to simplify 
system controls by the hardware streaming and to reduce required 
memory capacities. It enables flowing pixels through all functional 
units in order, including multi-resolution spatial transform and 
temporal segmentation. The resultant architecture does not use 
memories except I/O buffers. Therefore, memory modules as well 
as complex address manipulation over the multiple global 
transforms and spatial/temporal interface is not required. The 
FPGA prototype chip dissipates 150 mW of power. This approach 
can be used for tablets and smart-phone by an ASIC 
implementation which will reduce the operation power to about 1/6. 

Index Terms— custom DSP processor, multi-resolution 
transform, Gaussian Mixture Model, FPGA prototype, streaming

1. INTRODUCTION 

A foreground segmentation based on a Gaussian Mixture Model 
(GMM) of pixels [1] has a robust nature to dynamic backgrounds. 
However, one feature processing by GMM requires many GMM 
parameters: every component Gaussian requires a weighting 
coefficient in addition to its mean and variance. When 3 
component Gaussians are employed, 9 parameters are required to 
find out foreground objects and to maintain the background. The 
conventional approach uses one set of features from every R, G, B 
component of a pixel [1]. Then, GMM parameters become 27 per 
pixel and occupy 27 frame memories for a video signal.  In 
addition, this approach is not so stable for HDTV videos, due to 
the pixel independent processing. In addition, there are some 
implementation trials by FPGA, but these implementations employ 
simplified algorithms to reduce arithmetic operations [2]. Another 
way to implement the above approach seems to employ GPGPU 
which can provide multiple floating point units and a large 
capacity memory in the host microprocessors. High power 
consumption is resulted, but still usable for surveillance purposes. 

The transform domain GMM approach [3], which utilizes 
multiple resolution transforms over the luminance components 
followed by GMM, produces quite stable segmentation over 
HDTV videos with only 10% of the conventional processing 
resources. This reduction comes from the fact that only low band 
features are used. In the same ratio of the processing reduction, the 
required memory capacity for GMM parameters also decreases. 
Therefore, this approach is attractive for realizing a compact 
system for mobile applications of gait recognition and action 
recognition which require non-rigid shape foreground. This is 

because recent mobile terminals are becoming popular to introduce 
high resolution cameras. However, GPGPU cannot be employed, 
due to their huge power consumption of more than 100 W.  The 
power dissipation can be reduced to only 10% in average by a 
FPGA implementation instead of GPGPU [4]. Further power 
reduction is possible to 10% when ASIC converted from the FPGA 
design is employed [5].  

The approach proposed here is based on the GMM algorithm 
in multi-resolution transform domain. However, the straight 
forward ASIC implementation of the algorithm is not efficient in 
terms of complexity. The algorithm requires iterative operations of 
feature extraction from every resolution transform followed by a 
temporal GMM processing. The multi-resolution processing is 
realized by a set of transforms whose source area sizes are 2x2 
times larger or smaller in each other. Therefore, the multi-
resolution transformation should be carried out by a fast algorithm 
for the operation reduction. Then, every stage of the fast algorithm 
becomes spectra on a resolution and they are stored into an internal 
memory for the next stage transforms. The internal memory plays a 
role of storing interim spectra for further transform and also of 
converting the spatial processing to the temporal processing in 
every multi-resolution transform domain. However, it requires 
storages for storing spectra in every stage for a fast algorithm. 

The architecture described here is concerning about 
simplification of the above straight forward implementation. The 
proposed architecture makes pixels flow through all the processing 
in a single pixel-stream by replacing internal memories with a 
small amount of registers. Once a pixel data is fetched from the 
input buffer, the related processing on the pixel is carried out 
continuously as much as possible. This is possible because only 
low sequency features on Walsh transform (WT) is used for the 
GMM segmentation. The used nature of WT is that the WT spectra 
in a block can be produced from a couple of spectra sets for two 
half size blocks in one dimensional case. Therefore, buffer 
memories, which store interim spectra of all small blocks in the 
largest block, are not required for multi-resolution transform. The 
pixel flow order can be determined by specially designed register 
files in the multi-resolution transform processor. 

In the paper, the transformed domain foreground 
segmentation is first reviewed. In the following sections, the 
proposed pixel flow, processor architectures and the resulting 
performance are described.  

2. FOREGROUND SEGMENTATION� �

� �� �

� �

ALGORITHM IN TRANSFORM DOMAIN 

The overall processing of the foreground segmentation in WT 
domain [3] can be depicted in Fig. 1 in the following page, where a 
multi-resolution WT parameter processor (WPP) and the GMM
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      Fig.1. Functional block diagram of FPGA processor. 

thread processor (GTP) are depicted. In WPP, a HDTV picture is 
first divided into (4 x 4) pixel blocks and every block is 
transformed  by WT. After that, the original blocks are merged to a 
larger blocks by combining (2 x 2) adjacent blocks and the block is 
transformed again. This process is iteratively carried out until the 
transform of a (64 x 64) pixel block is completed. In every 
transform, three WT parameters are calculated in the following 
way. 
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where |Wij| shows the absolute value of Walsh spectrum at the (i, j)
coordinate. These features are, then, sent to GTP. 

In GTP, every WT feature is processed by the GMM of every 
background block, having the probability density function of
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where Ni(μi, σ
2
i) is the i-th Gaussian with the mean μi and variance 

σ

2
i, and ωi is the i-th Gaussian weighting coefficient. Every WT 

feature value is checked whether it is included in a range of a 
component Gaussian or not. When a Gaussian covers the WT 
feature value in (1), the Gaussian parameters of the mean and 
variance are updated by using the input WT feature values. The 
weighting coefficient value also increases. Otherwise, Gaussian 
parameters of the mean and variance are kept unchanged, but the 
weighting parameter value decreases. When no component 
Gaussian is found, the least weight component Gaussian is 
replaced with a new component Gaussian having the WT 
parameter value as μi and a relatively large σ2

i as initial values..
After these updates, the weighting coefficients from three 

Gaussians in every WT feature are sent to a Sort-Engine in GTP, 
where the sorting process is carried out in accordance with the 
weighting coefficients. This process segregates the component 
Gaussians into background or foreground classes. Gaussians 
having bigger weights are classified to the backgrounds. When the 
WT feature value is covered with a foreground Gaussian, the block 
becomes foreground. This information is sent to the output buffer 
where a foreground binary image is generated by combining the 
results of different resolution decisions.  

3. PIXEL FLOW 

The design effort has been paid to eliminate internal memory units, 
including interface between WPP and GTP. This is because the 
employment of internal memory units requires complex address 
control as well as memory hardware. Therefore, once a pixel is 
fetched from the input buffer, all processing from the input to the 
output is carried out just like a stream of pixels. There are two 
restrictions on the internal memory elimination between WPP and  

Fig.2. Walsh Transform Expansion. 

the GTP. The first one is to realize continuous processing between 
the spatial transform and the temporal GMM, and the second one 
is to regulate the data transfer rate from the transform to the GMM 
so as not to overrun the GMM processing. 

The continuous processing of the transform and the GMM can 
be realized by using the WT spectra property. A set of four  (N/2 x 
N/2) spectrum blocks can be efficiently merged into the (N x N) 
spectrum block by only additions and subtractions. This approach 
is known as the Fast Walsh Transform (FWT) [6], as shown in Figs. 
2 (a), (b), (c). The spectra in enlargement block are calculated by 
using a 2D butterfly operator, similar to that of FFT. Note that the 
enlargement process in spectra among adjacent blocks is not 
realized in FFT, due to the phase term existence in the basis 
functions. FFT can realize wider source area spectra from a set of 
small source area spectra, but the small source areas have to be 
selected to have interlaced relationship in the original  source area. 

Another Walsh spectrum property on the WT features is that 
the spectrum components used in (1) requires only three 
components of W00, W01, W10 in every (N/2 x N/2) block. This 
implies that every enlargement process from 4 transform blocks to 
a 4 times bigger block transform can be simplified and have the 
same processing steps.  

The processing order of WT blocks in WPP is arranged so 
that the first (4 x 4) WT introduces three adjacent (4 x 4) WTs in 
the location of the right hand side,  that of the down side and that 
in the diagonally down side, depicted in Fig. 2(a). After these four 
(4 x 4) WTs, the processing of the (8 x 8) block transform, shown 
in Fig. 2(b), is started to execute before other (4 x 4) WT 
calculations.  Similarly, the 4 times larger block size WT is started 
immediately when 4 adjacent quarter size blocks are completed. 
Therefore, the feature parameter processing order can be 
formulated by using operators in the following way.
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where P4 shows the process of generating a set of (4 x 4) WT 
features, WT2 is the (2 x 2) WT operator, • is a concatenation 
operator. Operators BF and FP4 in the parenthesis at the end of the 
line show that the WT feature calculator FP4 is required after the 
butterfly operator of BF. Other capital letters in the following lines 
show the same operators in P4, but the different suffixes show 
different block sizes.  

Equation 3 also shows quite interesting property for the second 
restriction which asks not to overwrite an interface register 
between WPP and GTP. A (4 x 4) WT feature set is sent to GTP 
after the period of 4 WT2 operations plus the period of the feature
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Fig. 3. Structure of Equation 3. 

Fig.4.� Foreground pixel difference between floating-point 
             and 16/32 bit fixed processing on a video scene. 

calculator (FP) with a block enlargement processing (BF). This P4

processing periodically appears in the second equations in (3). The 
additional BF and FP operations, terminating every Pi (i=8, 16, 32, 
64), disturbs the periodical data transfer. The following 
consideration is to realize a single interface register connection.  

Let T1 be the time period of 4 WT2 in P4 and let T2 be that of 
BF and FP processing at the last term in P4, shown in Fig. 3. Also, 
let T3 be a time period of GTP processing. Then, T3 should be 
equal or less than (T1+T2) for real time processing. However, at the 
last procedure in every equation of (3), GTP has to be activated 
every T2 time period after T1. The busiest period of GTP appears at 
the end of P64, where the consecutive five GTP activations occur. 
Therefore, the condition of a single register interface without 
overwriting can be summarized in the following 2 cases: (1)  nT2 <
(n-1) T3 where n is less than 5 and the left term shows the timing of 
register input from WPP and the right term shows the end of (n-1) 
GTP processing or the n-th data fetch timing point from the 
register during n consecutive activations, (2) 5 GTP processing can 
be executed during 4T2+(T1+T2), where (T1+T2) is the vacant time 
period of the first P4 processing in the next (64x64) block. Precise 
consideration will be described later.  

4. FIXED-POINT ARCHITECTURE 

For mobile application purpose, the fixed point processing as well 
as small amount of internal memory is mandatory for reducing 
power consumption. Computer simulation shows that 32/16 bit 
processing is reasonable selection, as shown in Fig. 4, where 
foreground pixels are calculate at every frame by using floating-
point calculation and by using fixed point calculation. In addition, 
the set of three Gaussian feature parameters are unified into a 32 
bit word for the purpose of I/O bandwidth reduction from an external 

Fig.5. WPP structure. 

Fig.6. GTP architecture. 

parameter memory having one frame, 32 bit word capacity. 
The fixed point calculation generates only slightly higher false 
foreground pixels. 

The employed WPP and GTP processing is carried out every 
 (64 x 64) input pixel block transferred from the external frame 
memory. The (64 x 64) block is the maximum block size for the  
multi-resolution transform. In order to process HDTV (1920 x 
1024 pixels in 30 frames per second) in real time, the processing 
time for a (64 x 64) input block should be within 69.44 μsec.  

Figure 5 shows the architecture of WPP, having a form of a 
tandem connection of two sets of two 16 bit ALU’s so as to realize 
a WT butterfly in a pipelined form. In order to realize efficient 
processing in the tightly connected ALUs, four operands can be 
fed into the arithmetic units through a 64 bit buss.  Specially 
designed 16 bit register files and the input buffer outputs are 
connected to this bus. Two pipeline cycles produce one pair of 
spectra on a (2 x 2) WT. In addition, the tightly connected ALUs 
can calculate two absolute values at a time and integer 
multiplications by using bit-shift operations for calculating WT 
features, shown in (1). The arithmetic unit performance can 
process all transforms and WT feature generations in real time, 
when WPP works at 100 MHz.  

The function for realizing processing without internal memory 
exists in specially designed controller and register files in WPP. 
The order of fetching pixels from the input buffer is accomplished 
by using the zigzag scan for the WT block enlargement order, 
shown in Fig. 2. It can be easily realized by setting the address 
register for the input buffer by a binary counter where the even bit 
positions are shifted to the upper half positions for the column 
address and the odd bit positions are shifted to the lower half 
positions for the row address.  

In order to realize a larger block layer processing, the 
calculated spectrum results are stored in the register files, having 
an autonomous control in a register selection in the file. Three files 
are employed and named as W00, W01 and W10, for holding the 
corresponding spectrum. Every register file consists of 20 registers, 
having a structure of 5 layers of 4 registers for the operation of the 
right hand side terms in (3), except the operation of the last term. 
The autonomous register selection control is also simple. When 4 
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registers in a same block layer become full, a register in the next 
layer registers is selected to store. The contents of smaller layer 
register contents are abandoned.  

The temporal registers hold W02, W20, W03 and W30 for 
calculating WT parameters in (1). Whenever the spectra in an 
enlarged block are calculated, These coefficients are used only 
once for WT feature calculations in WPP.  

On the other hand, GTP consists of 3 sets of Gaussian Tread 
Processing Elements (GTPE), as shown in Fig. 5. The 3 sets of 
GTPE come from the employed 3 WT features. In every GTPE, 3 
homogeneous Processing Elements (PEs) are used for 3 
component Gaussians, where every PE checks the inclusion of the 
WT feature value in the component Gaussian and updates its 
weighting coefficient as well as Gaussian Parameters of their 
means and variances, depending on the checked results. The final 
decision of foreground or background and the adjustment of 
weighting coefficients have to be carried out in the sort engine, 
where the checked results of 3 Gaussians from PEs are combined 
to give the final block result. 

Every PE is composed of ALU, a multiplier, another ALU and 
a register in a pipeline form. The process to check the WT feature 
is carried out in the variance domain by using the first ALU 
followed by the multiplier. The third ALU has a function of storing 
flags. This is used in the parameter update processing and it 
enables replacing conditional branch operations with non-
conditional ones for some modifications of update order. Therefore, 
the processing of GMM inclusion and parameter update functions 
can be achieved by keeping the same processing steps. This 
enables using a SIMD control for these three PEs. The sort engine 
is composed of multipliers for normalizing weight coefficients and 
adder trees for sorting these results. 

All of the estimated GMM parameters inside a (64 x 64) block 
are fetched from an external memory, synchronized with the (64 x 
64) input pixel data, as described in section 3. Due to the pixel 
flow approach, precise address information to control the external 
memory is not required. This is because such parameters should 
appear exactly after every frame rate.  Therefore, the external 
memory for GMM parameters should have a form of a ring buffer. 
The starting point for the ring buffer at the beginning of 
processing does not affect the processing results.

5. FPGA IMPLEMENTATION RESULTS 

The proposed foreground segmentation core has been implemented 
by FPGA. The WPP processing efficiency reaches more than 95 % 
when the clock frequency is set to 100 MHz. The hardware 
elements are summarized in Table 1, including the input/output 
buffers of pixels and GMM parameters. The BRAM in the table 1 
are used for these buffers. The power dissipation is evaluated by 
X-power for Xilinx Vertex4-XC4VLX200, and summarized in 
Table 2. The power dissipation of the IP core part, excluding the 
leakage power and I/O buffer power which are consumed by FPGA 
itself, dissipates only around 152 mW. As the Verilog net list of 
has been obtained, further power reductionto around 20% is 
possible by Full ASIC design.  

The straight forward approach described in section 3, which 
employs the iterative processing of a single resolution transform 
completion followed by GMM processing is considered here. This 
configuration needs a 2D buffer between the transform and GMM. 
The first (2 x 2) WT layer processing can be executed by a single 
ALU processor, when the processor runs at the 110 MHz clock  

frequency. In order to process the following (4 x 4) WT in a 
pipeline manner in terms of the 2x2 WT layer, a double buffer 
structure has to be introduced. Also, the buffer has to store W00,  
W01 and W10 for preparation of the (4 x 4) WT with extended 
dynamic range. About four times bigger buffer capacity than that 
of the input buffer is required. From the (4 x 4) WT processing, the 
output buffer has to store 7 spectra used in  (1) for every block. As 
a result, from the (4 x 4) block layer to the last (64 x 64) block 
layer, a single processor can execute all the transform in real time. 
However CPU efficiency drops to 70%, if the address calculation 
is carried out by other processing resources. In this pipeline stage, 
WT features should be calculated from the (4 x 4) block layer to 
the (64 x 64) block layer by another processor. As a result, the 
straight forward approach needs a lot of memory module inside the 
processing stage with complex address computations.  

The following consideration is on the connection between 
WPP and GTP, in terms of processing efficiency of GTP. The 
implementation result shows the time period ratio of T1 to T2, 
described in section 2, becomes 10 to 12 in WPP. Based on this 
figure, the evaluation of the lowest GTP processing efficiency of 
maximizing GTP processing time is calculated. It becomes 61% for 
the single register employment between WPP and GTP.  When an 
additional register is inserted for the buffer register purpose, it 
becomes 72%. Our system is designed to have around 45% activity 
in average and to sleeps until WPP wakes up. Therefore, the single 
retiming register employment is enough for our purpose.  

6. CONCLUSION 

Foreground segmentation in multi-resolution transform domains 
for HDTV pictures have been proposed and implemented by FPGA. 
The architecture is based on a newly introduced pixel flow 
structure. The power consumption of 153 mW excluding leakage 
power and I/O buffer seems to be applicable for mobile 
applications when it is implemented by a custom ASIC approach. 
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