
GMM FOREGROUND SEGMENTATION PROCESSOR
BASED ON ADDRESS FREE PIXEL STREAMS

Ryo Yagi, Tomohito Kajimoto and Takao Nishitani

Tokyo Metropolitan University

ABSTRACT

A compact implementation of a foreground segmentation processor
in a multi-resolution transform domain has been proposed for
HDTV signals. The proposed architecture is designed to simplify
system controls by the hardware streaming and to reduce required
memory capacities. It enables flowing pixels through all functional
units in order, including multi-resolution spatial transform and
temporal segmentation. The resultant architecture does not use
memories except I/O buffers. Therefore, memory modules as well
as complex address manipulation over the multiple global
transforms and spatial/temporal interface is not required. The
FPGA prototype chip dissipates 150 mW of power. This approach
can be used for tablets and smart-phone by an ASIC
implementation which will reduce the operation power to about 1/6.

Index Terms— custom DSP processor, multi-resolution
transform, Gaussian Mixture Model, FPGA prototype, streaming

1. INTRODUCTION

A foreground segmentation based on a Gaussian Mixture Model
(GMM) of pixels [1] has a robust nature to dynamic backgrounds.
However, one feature processing by GMM requires many GMM
parameters: every component Gaussian requires a weighting
coefficient in addition to its mean and variance. When 3
component Gaussians are employed, 9 parameters are required to
find out foreground objects and to maintain the background. The
conventional approach uses one set of features from every R, G, B
component of a pixel [1]. Then, GMM parameters become 27 per
pixel and occupy 27 frame memories for a video signal. In
addition, this approach is not so stable for HDTV videos, due to
the pixel independent processing. In addition, there are some
implementation trials by FPGA, but these implementations employ
simplified algorithms to reduce arithmetic operations [2]. Another
way to implement the above approach seems to employ GPGPU
which can provide multiple floating point units and a large
capacity memory in the host microprocessors. High power
consumption is resulted, but still usable for surveillance purposes.

The transform domain GMM approach [3], which utilizes
multiple resolution transforms over the luminance components
followed by GMM, produces quite stable segmentation over
HDTV videos with only 10% of the conventional processing
resources. This reduction comes from the fact that only low band
features are used. In the same ratio of the processing reduction, the
required memory capacity for GMM parameters also decreases.
Therefore, this approach is attractive for realizing a compact
system for mobile applications of gait recognition and action
recognition which require non-rigid shape foreground. This is

because recent mobile terminals are becoming popular to introduce
high resolution cameras. However, GPGPU cannot be employed,
due to their huge power consumption of more than 100 W. The
power dissipation can be reduced to only 10% in average by a
FPGA implementation instead of GPGPU [4]. Further power
reduction is possible to 10% when ASIC converted from the FPGA
design is employed [5].

The approach proposed here is based on the GMM algorithm
in multi-resolution transform domain. However, the straight
forward ASIC implementation of the algorithm is not efficient in
terms of complexity. The algorithm requires iterative operations of
feature extraction from every resolution transform followed by a
temporal GMM processing. The multi-resolution processing is
realized by a set of transforms whose source area sizes are 2x2
times larger or smaller in each other. Therefore, the multi-
resolution transformation should be carried out by a fast algorithm
for the operation reduction. Then, every stage of the fast algorithm
becomes spectra on a resolution and they are stored into an internal
memory for the next stage transforms. The internal memory plays a
role of storing interim spectra for further transform and also of
converting the spatial processing to the temporal processing in
every multi-resolution transform domain. However, it requires
storages for storing spectra in every stage for a fast algorithm.

The architecture described here is concerning about
simplification of the above straight forward implementation. The
proposed architecture makes pixels flow through all the processing
in a single pixel-stream by replacing internal memories with a
small amount of registers. Once a pixel data is fetched from the
input buffer, the related processing on the pixel is carried out
continuously as much as possible. This is possible because only
low sequency features on Walsh transform (WT) is used for the
GMM segmentation. The used nature of WT is that the WT spectra
in a block can be produced from a couple of spectra sets for two
half size blocks in one dimensional case. Therefore, buffer
memories, which store interim spectra of all small blocks in the
largest block, are not required for multi-resolution transform. The
pixel flow order can be determined by specially designed register
files in the multi-resolution transform processor.

In the paper, the transformed domain foreground
segmentation is first reviewed. In the following sections, the
proposed pixel flow, processor architectures and the resulting
performance are described.

2. FOREGROUND SEGMENTATION� �

� �� �

� �

ALGORITHM IN TRANSFORM DOMAIN

The overall processing of the foreground segmentation in WT
domain [3] can be depicted in Fig. 1 in the following page, where a
multi-resolution WT parameter processor (WPP) and the GMM

1653978-1-4673-0046-9/12/$26.00 ©2012 IEEE ICASSP 2012

 Fig.1. Functional block diagram of FPGA processor.

thread processor (GTP) are depicted. In WPP, a HDTV picture is
first divided into (4 x 4) pixel blocks and every block is
transformed by WT. After that, the original blocks are merged to a
larger blocks by combining (2 x 2) adjacent blocks and the block is
transformed again. This process is iteratively carried out until the
transform of a (64 x 64) pixel block is completed. In every
transform, three WT parameters are calculated in the following
way.

,)0,(,),0(

,
3

1

2
3

1

2

00

∑∑
==

==

=

j
ACV

i
ACH

DC

jWjXiWiX

WX

�

 (1)

where |Wij| shows the absolute value of Walsh spectrum at the (i, j)
coordinate. These features are, then, sent to GTP.

In GTP, every WT feature is processed by the GMM of every
background block, having the probability density function of

),,(
3

1

2
∑

=i
iiii N σμω (2)

where Ni(μi, σ
2
i) is the i-th Gaussian with the mean μi and variance

σ

2
i, and ωi is the i-th Gaussian weighting coefficient. Every WT

feature value is checked whether it is included in a range of a
component Gaussian or not. When a Gaussian covers the WT
feature value in (1), the Gaussian parameters of the mean and
variance are updated by using the input WT feature values. The
weighting coefficient value also increases. Otherwise, Gaussian
parameters of the mean and variance are kept unchanged, but the
weighting parameter value decreases. When no component
Gaussian is found, the least weight component Gaussian is
replaced with a new component Gaussian having the WT
parameter value as μi and a relatively large σ2

i as initial values..
After these updates, the weighting coefficients from three

Gaussians in every WT feature are sent to a Sort-Engine in GTP,
where the sorting process is carried out in accordance with the
weighting coefficients. This process segregates the component
Gaussians into background or foreground classes. Gaussians
having bigger weights are classified to the backgrounds. When the
WT feature value is covered with a foreground Gaussian, the block
becomes foreground. This information is sent to the output buffer
where a foreground binary image is generated by combining the
results of different resolution decisions.

3. PIXEL FLOW

The design effort has been paid to eliminate internal memory units,
including interface between WPP and GTP. This is because the
employment of internal memory units requires complex address
control as well as memory hardware. Therefore, once a pixel is
fetched from the input buffer, all processing from the input to the
output is carried out just like a stream of pixels. There are two
restrictions on the internal memory elimination between WPP and

Fig.2. Walsh Transform Expansion.

the GTP. The first one is to realize continuous processing between
the spatial transform and the temporal GMM, and the second one
is to regulate the data transfer rate from the transform to the GMM
so as not to overrun the GMM processing.

The continuous processing of the transform and the GMM can
be realized by using the WT spectra property. A set of four (N/2 x
N/2) spectrum blocks can be efficiently merged into the (N x N)
spectrum block by only additions and subtractions. This approach
is known as the Fast Walsh Transform (FWT) [6], as shown in Figs.
2 (a), (b), (c). The spectra in enlargement block are calculated by
using a 2D butterfly operator, similar to that of FFT. Note that the
enlargement process in spectra among adjacent blocks is not
realized in FFT, due to the phase term existence in the basis
functions. FFT can realize wider source area spectra from a set of
small source area spectra, but the small source areas have to be
selected to have interlaced relationship in the original source area.

Another Walsh spectrum property on the WT features is that
the spectrum components used in (1) requires only three
components of W00, W01, W10 in every (N/2 x N/2) block. This
implies that every enlargement process from 4 transform blocks to
a 4 times bigger block transform can be simplified and have the
same processing steps.

The processing order of WT blocks in WPP is arranged so
that the first (4 x 4) WT introduces three adjacent (4 x 4) WTs in
the location of the right hand side, that of the down side and that
in the diagonally down side, depicted in Fig. 2(a). After these four
(4 x 4) WTs, the processing of the (8 x 8) block transform, shown
in Fig. 2(b), is started to execute before other (4 x 4) WT
calculations. Similarly, the 4 times larger block size WT is started
immediately when 4 adjacent quarter size blocks are completed.
Therefore, the feature parameter processing order can be
formulated by using operators in the following way.

),(

),(

),(

),(

),(

643232323264

321616161632

16888816

844448

422224

FPBFPPPPP

FPBFPPPPP

FPBFPPPPP

FPBFPPPPP

FPBFWTWTWTWTP

•••••=
•••••=

•••••=
•••••=

•••••=

 (3)

where P4 shows the process of generating a set of (4 x 4) WT
features, WT2 is the (2 x 2) WT operator, • is a concatenation
operator. Operators BF and FP4 in the parenthesis at the end of the
line show that the WT feature calculator FP4 is required after the
butterfly operator of BF. Other capital letters in the following lines
show the same operators in P4, but the different suffixes show
different block sizes.

Equation 3 also shows quite interesting property for the second
restriction which asks not to overwrite an interface register
between WPP and GTP. A (4 x 4) WT feature set is sent to GTP
after the period of 4 WT2 operations plus the period of the feature

1654

Fig. 3. Structure of Equation 3.

Fig.4.� Foreground pixel difference between floating-point
 and 16/32 bit fixed processing on a video scene.

calculator (FP) with a block enlargement processing (BF). This P4

processing periodically appears in the second equations in (3). The
additional BF and FP operations, terminating every Pi (i=8, 16, 32,
64), disturbs the periodical data transfer. The following
consideration is to realize a single interface register connection.

Let T1 be the time period of 4 WT2 in P4 and let T2 be that of
BF and FP processing at the last term in P4, shown in Fig. 3. Also,
let T3 be a time period of GTP processing. Then, T3 should be
equal or less than (T1+T2) for real time processing. However, at the
last procedure in every equation of (3), GTP has to be activated
every T2 time period after T1. The busiest period of GTP appears at
the end of P64, where the consecutive five GTP activations occur.
Therefore, the condition of a single register interface without
overwriting can be summarized in the following 2 cases: (1) nT2 <
(n-1) T3 where n is less than 5 and the left term shows the timing of
register input from WPP and the right term shows the end of (n-1)
GTP processing or the n-th data fetch timing point from the
register during n consecutive activations, (2) 5 GTP processing can
be executed during 4T2+(T1+T2), where (T1+T2) is the vacant time
period of the first P4 processing in the next (64x64) block. Precise
consideration will be described later.

4. FIXED-POINT ARCHITECTURE

For mobile application purpose, the fixed point processing as well
as small amount of internal memory is mandatory for reducing
power consumption. Computer simulation shows that 32/16 bit
processing is reasonable selection, as shown in Fig. 4, where
foreground pixels are calculate at every frame by using floating-
point calculation and by using fixed point calculation. In addition,
the set of three Gaussian feature parameters are unified into a 32
bit word for the purpose of I/O bandwidth reduction from an external

Fig.5. WPP structure.

Fig.6. GTP architecture.

parameter memory having one frame, 32 bit word capacity.
The fixed point calculation generates only slightly higher false
foreground pixels.

The employed WPP and GTP processing is carried out every
 (64 x 64) input pixel block transferred from the external frame
memory. The (64 x 64) block is the maximum block size for the
multi-resolution transform. In order to process HDTV (1920 x
1024 pixels in 30 frames per second) in real time, the processing
time for a (64 x 64) input block should be within 69.44 μsec.

Figure 5 shows the architecture of WPP, having a form of a
tandem connection of two sets of two 16 bit ALU’s so as to realize
a WT butterfly in a pipelined form. In order to realize efficient
processing in the tightly connected ALUs, four operands can be
fed into the arithmetic units through a 64 bit buss. Specially
designed 16 bit register files and the input buffer outputs are
connected to this bus. Two pipeline cycles produce one pair of
spectra on a (2 x 2) WT. In addition, the tightly connected ALUs
can calculate two absolute values at a time and integer
multiplications by using bit-shift operations for calculating WT
features, shown in (1). The arithmetic unit performance can
process all transforms and WT feature generations in real time,
when WPP works at 100 MHz.

The function for realizing processing without internal memory
exists in specially designed controller and register files in WPP.
The order of fetching pixels from the input buffer is accomplished
by using the zigzag scan for the WT block enlargement order,
shown in Fig. 2. It can be easily realized by setting the address
register for the input buffer by a binary counter where the even bit
positions are shifted to the upper half positions for the column
address and the odd bit positions are shifted to the lower half
positions for the row address.

In order to realize a larger block layer processing, the
calculated spectrum results are stored in the register files, having
an autonomous control in a register selection in the file. Three files
are employed and named as W00, W01 and W10, for holding the
corresponding spectrum. Every register file consists of 20 registers,
having a structure of 5 layers of 4 registers for the operation of the
right hand side terms in (3), except the operation of the last term.
The autonomous register selection control is also simple. When 4

1655

registers in a same block layer become full, a register in the next
layer registers is selected to store. The contents of smaller layer
register contents are abandoned.

The temporal registers hold W02, W20, W03 and W30 for
calculating WT parameters in (1). Whenever the spectra in an
enlarged block are calculated, These coefficients are used only
once for WT feature calculations in WPP.

On the other hand, GTP consists of 3 sets of Gaussian Tread
Processing Elements (GTPE), as shown in Fig. 5. The 3 sets of
GTPE come from the employed 3 WT features. In every GTPE, 3
homogeneous Processing Elements (PEs) are used for 3
component Gaussians, where every PE checks the inclusion of the
WT feature value in the component Gaussian and updates its
weighting coefficient as well as Gaussian Parameters of their
means and variances, depending on the checked results. The final
decision of foreground or background and the adjustment of
weighting coefficients have to be carried out in the sort engine,
where the checked results of 3 Gaussians from PEs are combined
to give the final block result.

Every PE is composed of ALU, a multiplier, another ALU and
a register in a pipeline form. The process to check the WT feature
is carried out in the variance domain by using the first ALU
followed by the multiplier. The third ALU has a function of storing
flags. This is used in the parameter update processing and it
enables replacing conditional branch operations with non-
conditional ones for some modifications of update order. Therefore,
the processing of GMM inclusion and parameter update functions
can be achieved by keeping the same processing steps. This
enables using a SIMD control for these three PEs. The sort engine
is composed of multipliers for normalizing weight coefficients and
adder trees for sorting these results.

All of the estimated GMM parameters inside a (64 x 64) block
are fetched from an external memory, synchronized with the (64 x
64) input pixel data, as described in section 3. Due to the pixel
flow approach, precise address information to control the external
memory is not required. This is because such parameters should
appear exactly after every frame rate. Therefore, the external
memory for GMM parameters should have a form of a ring buffer.
The starting point for the ring buffer at the beginning of
processing does not affect the processing results.

5. FPGA IMPLEMENTATION RESULTS

The proposed foreground segmentation core has been implemented
by FPGA. The WPP processing efficiency reaches more than 95 %
when the clock frequency is set to 100 MHz. The hardware
elements are summarized in Table 1, including the input/output
buffers of pixels and GMM parameters. The BRAM in the table 1
are used for these buffers. The power dissipation is evaluated by
X-power for Xilinx Vertex4-XC4VLX200, and summarized in
Table 2. The power dissipation of the IP core part, excluding the
leakage power and I/O buffer power which are consumed by FPGA
itself, dissipates only around 152 mW. As the Verilog net list of
has been obtained, further power reductionto around 20% is
possible by Full ASIC design.

The straight forward approach described in section 3, which
employs the iterative processing of a single resolution transform
completion followed by GMM processing is considered here. This
configuration needs a 2D buffer between the transform and GMM.
The first (2 x 2) WT layer processing can be executed by a single
ALU processor, when the processor runs at the 110 MHz clock

frequency. In order to process the following (4 x 4) WT in a
pipeline manner in terms of the 2x2 WT layer, a double buffer
structure has to be introduced. Also, the buffer has to store W00,
W01 and W10 for preparation of the (4 x 4) WT with extended
dynamic range. About four times bigger buffer capacity than that
of the input buffer is required. From the (4 x 4) WT processing, the
output buffer has to store 7 spectra used in (1) for every block. As
a result, from the (4 x 4) block layer to the last (64 x 64) block
layer, a single processor can execute all the transform in real time.
However CPU efficiency drops to 70%, if the address calculation
is carried out by other processing resources. In this pipeline stage,
WT features should be calculated from the (4 x 4) block layer to
the (64 x 64) block layer by another processor. As a result, the
straight forward approach needs a lot of memory module inside the
processing stage with complex address computations.

The following consideration is on the connection between
WPP and GTP, in terms of processing efficiency of GTP. The
implementation result shows the time period ratio of T1 to T2,
described in section 2, becomes 10 to 12 in WPP. Based on this
figure, the evaluation of the lowest GTP processing efficiency of
maximizing GTP processing time is calculated. It becomes 61% for
the single register employment between WPP and GTP. When an
additional register is inserted for the buffer register purpose, it
becomes 72%. Our system is designed to have around 45% activity
in average and to sleeps until WPP wakes up. Therefore, the single
retiming register employment is enough for our purpose.

6. CONCLUSION

Foreground segmentation in multi-resolution transform domains
for HDTV pictures have been proposed and implemented by FPGA.
The architecture is based on a newly introduced pixel flow
structure. The power consumption of 153 mW excluding leakage
power and I/O buffer seems to be applicable for mobile
applications when it is implemented by a custom ASIC approach.

REFERENCES

[1] C. Stauffer, et al., “Adaptive background mixture models for
real-time tracking,” Proc. CVPR’99, pp.246-252, 1999.
[2] K. Appiah, and A. Hunter, “A single-chip FPGA
implementation of real-time adaptive background model,” ICFPT,
pp. 95-102, December 2005.
[3] H. Tezuka , et al., "Multiresolutional Gaussian Mixture Model
for Precise and Stable Foreground Segmentation in Transform
Domain", IEICE Trans. Fund., Vol. E92-A, pp. 772-778 , 2009.
[4] A. Papakonstantinou, et al., “ Multilevel Granularity
Parallelism Synthesis on FPGAs”, FCCM’11, pp.178-185, 2011.
[5] I. Kuon, et al., “Measuring the gap between FPGAs and
ASICs,” FPFA’06, pp.21-30, 2006.
[6] J. W. Manz, “A sequency-ordered fast walsh transform,” IEEE
Trans. Audio and Electroacoustics, vol. AU-20, pp.204-205, 1972.

��������� �	
� ��� �����

������ ��	
 ���� � �

������� ��� �������
����

������������
���
�
	� �	�	 ����

Table 2. Power Dissipation.

Table 1. Hardware Resources.

��������� �	
� ��� �����

������ ��	
 ���� � �

������� ��� �������
����

������������
���
�
	� �	�	 ����

Table 2. Power Dissipation.

Table 1. Hardware Resources.

1656

