
VALVED DATAFLOW FOR FPGA MEMORY HIERARCHY SYNTHESIS

M. Milford and J. McAllister

eStreams,
The Institute of Electronics, Computer Science and Information Technology (ECIT),

School of Electrical Engineering, Electronics and Computer Science,
Queen’s University Belfast

Email: {mmilford01, jp.mcallister}@qub.ac.uk

ABSTRACT
For modern FPGA, implementation of memory intensive pro-

cessing applications such as high end image and video pro-

cessing systems necessitates manual design of complex multi-

level memory hierarchies incorporating off-chip DDR and on-

chip BRAM and LUT RAM. In fact, automated synthesis of

multi-level memory hierarchies is an open problem facing

high level synthesis technologies for FPGA devices. In this

paper we describe the first automated solution to this prob-

lem. By exploiting a novel dataflow application modelling

dialect, known as Valved Dataflow, we show for the first time

how, not only can such architectures be automatically derived,

but also that the resulting implementations support real-time

processing for current image processing application standards

such as H.264. We demonstrate the viability of this approach

by reporting the performance and cost of hierarchies automat-

ically generated for Motion Estimation, Matrix Multiplication

and Sobel Edge Detection applications on Virtex-5 FPGA.

Index Terms— FPGA, High Level Synthesis, Dataflow,

Memory

1. INTRODUCTION

The computational capacity and memory bandwidth re-

sources of modern FPGA are unprecedented, motivating their

use in very high performance embedded signal and image

processing systems [1]. These characteristics, along with the

emergence of viable High Level Synthesis (HLS) design tools

(i.e. those which can synthesise efficient FPGA processing

architectures from behavioural algorithm specifications [2])

suggest FPGA are a programmable embedded DSP device of

unequalled potential.

This potential, however, is tempered by the relative lack

of on-chip data storage capacity on modern FPGA [3]. This

presents a severe implementation problem for image process-

ing applications in particular, where significant capacity and

bandwidth are required for their frame-based operations. To

overcome this issue, manual development of multi-layered hi-

erarchies of memory, composed of numerous layers of RAM

implemented in the FPGAs programmable logic, or from ded-

icated on-chip RAMs, and off-chip RAM is required. Whilst

methodologies deriving such architectures from behavioural

models are evident [2][4] automated solutions do not exist, a

situation which has been identified as a key open challenge

threatening the viability of HLS tools for FPGA [2].

In this paper we present the first such automated solu-

tion. By exploiting a novel dataflow application modelling

approach, known as Valved Dataflow (VDF), we show how

multi-level memory hierarchies may be automatically de-

rived, and we present the synthesis results of the first auto-

matically generated implementations for Motion Estimation,

matrix multiplication and Sobel Edge Detection applications.

The remainder of this paper is as follows. Section 2 de-

scribes the memory resources of modern FPGA and surveys

current work which addresses synthesis of such structures.

Section 3 introduces VDF, and Section 4 the automated map-

ping approach for translating VDF models to multi-level

memory architectures. Section 5 presents the results from the

automated synthesis of image processing kernels.

2. BACKGROUND

The relative capacities and bandwidths of the levels of a mem-

ory hierarchy resident on a state-of-the-art FPGA, such as the

Xilinx Virtex-6 are illustrated in Fig. 1 [3]. On-chip, these

devices host Look Up Table (LUT)-based RAM, which offer

a low capacity but very high bandwidth data storage facil-

ity. These are augmented by configurable, dedicated on-chip

Block RAM (BRAM) components which offer a higher ca-

pacity storage facility with lower bandwidth. Finally, off-chip

DDR3 memory offers low-bandwidth bulk data storage.

Consider these resources in the context of an image pro-

cessing operation such as Full Search Motion Estimation al-

gorithm (FSME) [5]. This processes 352×288 pixel frames of

CIF video data, where each pixel contains three 8 bit values.

Given a block-size of 16× 16 pixels and a search-window of

32×32 pixels, FSME requires 657 KB of storage capacity ac-

cessible at an approximate rate of 14.5 GB/s. Given these lev-

1645978-1-4673-0046-9/12/$26.00 ©2012 IEEE ICASSP 2012

LUTs

Block
Memory

Off-chip
Memory

Capacity: 1 MB
Bandwidth: 34.1 TB/s

Capacity: 4.6 MB
Bandwidth: 1.1 TB/s

Capacity: 2 GB/s
Bandwidth: 400 MB/s

Increasing Capacity
Decreasing Bandwidth

Fig. 1. Virtex-6 FPGA Memory Hierarchy

els, any substantial image processing application will quickly

saturate the on-chip capacity of FPGA, necessitating off-chip

storage, despite the fact that the requisite memory bandwidth

is not availalbe off-chip. Typically, the solution to this prob-

lem is the development of a multi-level memory architecture

spanning all levels of the hierarchy.

Whilst work has shown how refining the application to

exploit all three levels of the hierarchy enables real-time im-

plementation [4], this is typical of current approaches to this

problem which offer only manual solutions [6][2], or auto-

matic derivation of two-level hierarchies [7]. To the best of

the authors’ knowledge, there is as yet no approach which

can automatically derive a memory hierarchy of more than

two levels.

In this paper we solve this problem, presenting the first

such approach. Given the proliferation of dataflow applica-

tion models in approaches to this problem, either as the entry

point for the HLS process [4][8][9], or as an intermediate lan-

guage used during the compilation process [10], we propose a

novel dataflow modelling approach as the entry point for this

automated solution in Section 3.

3. VALVED DATAFLOW

We propose the use of a novel dataflow [11] modelling dialect,

known as Valved Dataflow (VDF) as the entry point for the

memory hierarchy synthesis process. The key novelty in VDF

is in the strict separation of the computational parts of the

algorithm from the parts of the algorithm which change the

rate and nature of the data as it moves between computational

elements. A VDF graph (VDFG) G = {A,E} is composed

of a set of actors A and a set of edges E. Each actor a ∈
A = {P} where P is a set of ports. When an actor fires, it

consumes tokens through its input ports, transforms them and

produces tokens through its output ports. Hence each port

p ∈ P = {r, t}, where r ∈ N defines the rate of each port,

i.e. the number of data tokens which pass the port per firing

and t ∈ N
m describes the size of the m-dimensional token the

port encounters.

The major differentiating feature of VDF from other

dataflow languages is in its definition of an edge e ∈ E =
〈prd, cns, V 〉 where prd ∈ A, cns ∈ A are source and sink

vertices respectively and V is a sequence of valves. A valve,

shown in Fig. 2 is a single-input, single-output entity. It has

Input
space Output

space

ri
(ti)

ro
(to)

)(IFO

Fig. 2. A Valve

no functional capability (i.e. it cannot perform arbitrary math-

ematical operations) but rather a firing of a valve changes the

rate and form of data flowing along the edge, performing

for instance interpolations, decimations, token conversions

or subtoken selection operations. A valve maps the token

impinging on its input port i (said to be in its input space
I ∈ trii) onto tokens produced into its output space O ∈ troo
through its output port o. Hence it may be said to implement

the function F : I → O. To illustrate the effect of different

variations of F on the behaviour of a valve, consider how it

may be used to implement decimate, interpolate or sliding

window operators as outlined in Fig. 3.

4
1

1

cIOF 1:

234 1

(a) Decimate

1 4

1: IOF j orj

(b) Interpolate

1
(8)

5
(4)

4 3 2 18 7 6 5

4 3 2 1

4 3 25

8 7 6 5

},,,{: 321 jjjjj IIIIOF orj

(c) Sliding Window

Fig. 3. Valve Configurations

The key motivation for distinguishing valves from actors

is to allow valves (i.e the data transportation infrastructure) to

be synthesised independently of the mathematical operations

applied to the data. This refinement process is described in

Section 4.

1646

4. FPGA-BASED IMPLEMENTATION OF VDF
MODELS

4.1. Overview

The process for mapping a VDFG to an FPGA architecture is

show in Fig.4. It proceeds through two major steps: Technol-
ogy and Node Synthesis. During technology synthesis, VDFG

valves are mapped to specific layers of the memory hierarchy

of the target device and the actors to specific Processing El-

ements (PEs). This defines the network-level architecture of

the implementation, with the node level synthesis following to

finalise the final Register Transfer Level (RTL) architecture.

VDF Model

Technology
Synthesis

Memory Node
Synthesis

Memory
Structure

PE Node
Synthesis

PE
Architecture

RTL
Synthesis

Implementation

Fig. 4. VDFG Synthesis

Disparate components are used for actors and the valves,

interconnected via point-to-point communication links rep-

resented by the VDFG edges. The separation of the com-

putation and memory requirements of the application allows

independent synthesis of each. Hence for the remainder

of this work we assume PEs are realised either using pre-

designed components, or created by a HLS synthesis tool

such as Catapult-C or AutoESL [2].

The RTL architecture of a valve is shown in Fig. 5. It is

composed of a single buffer element with a decoupled read-

/write controller. The buffer contains, at any one time, the

entire contents of the input space for a single firing of the

valve. The read machine is responsible for loading the buffer

with the input space data. Once loaded, the write machine

reads the data according to F to satisfy the output produc-

tion rules. Note that to allow the static analyses exploited for

VDFG mapping described in the remainder of this section, F
must take the form of a static affine function. This restric-

tion has been shown to enable static compiler time analysis of

signal and image processing operations, whilst enabling suf-

ficient expressive power to specify their behaviours [9].

Synthesis of a sequence of VDF valves to a hierarchy of

memory resources requires resolution of three key issues:

1. Assign each valve to a level of the memory hierarchy.

Memory
Elements

ControllerRead
Machine

Write
Machine

Write address Read Address

Data in Data Out

Input
Port

Output
Port

Fig. 5. Valve Architecture

2. Determine the structure of each level of the hierarchy.

3. Realise the RTL architecture of each memory element.

The RTL architecture is as described in Fig. 5, hence we

focus on addressing the assignment and merging problem in

the remainder of this section.

4.2. Valve To Hierarchy Mapping

To address the assignment problem, i.e. mapping the n valves

along an edge onto the m levels of memory hierarchy, valves

are initially mapped according to their capacities. Specifi-

cally, this process adheres to the mapping rule in Table 1.

Table 1. Valve Mapping Rules
Capacity (×103 words) Target Memory Resource

0.256 LUT RAM

0.256 - 36 BRAM

> 36 Off-chip

As a result of this mapping, the capacity constraints of the

application will be met, but it may be that the bandwidth con-

straints of the application are violated. In particular, this is

likely to be the case at the interface between off-chip and on-

chip layers, since the bandwidth of off-chip memory is quite

restricted (see Table 1). In the case where the aggregate band-

width of the valves mapped off-chip exceeds the maximum

which may be supported by the target platform, the valves are

redistributed. This redistribution process is outlined in Fig.

6, where the most bandwidth-demanding valves mapped off-

chip are moved on-chip (i.e into BRAM) until the aggregate

off-chip bandwidth can be feasibly supported by the platform.

To deal with bandwidth violations in the on-chip layers of

memory hierarchy an alternative strategy may be employed,

i.e. exploiting more than one memory unit in parallel to boost

the bandwidth of that hierarchy layer. The minimum num-

ber of disparate memory components required for the output

valves at each level is given by W = BW (o)
BW (M) , where BW (o)

is the bandwidth of the valve output port, BW (M) is the

maximum bandwidth which the buffer may support. In prac-

tice a more suitable value, normally the next largest interger

factor of BW (o) should be chosen so that the bandwidth is

evenly spread across the W elements.

1647

OCB > maxbw

Calculate Offchip
Bandwidth (OCB)

Move off-chip
valve with largest
bandwidth on-chip

Finish

Start

n

y

Fig. 6. Bandwidth-Based Valve Redistribution

5. RESULTS

We have tested this approach by automating the synthesis of

SystemC-based VDF descriptions of three typical image pro-

cessing kernels to Xilinx Virtex 5 SX95T FPGA architectures.

The chosen kernels are:

1. Motion Estimation (ME) on 30 fps CIF video (as per

H.264 Level 1.3).

2. 128 × 128 Matrix Multiplication (MM) at 500 matri-

ces/s.

3. Sobel Edge Detection (SED) of 30 fps 720 p frames (as

per H.264 Level 3.1).

The implementations are summarised in Table 2. Syn-

thesis was performed using Xilinx ISE 11.3. In all cases the

requested real-time performance metrics were met.

Table 2. Synthesis Results
Operation ME MM SED

Frequency (MHz) 160 96 212

DSP48es 387 32 20

BRAMs 247 321 4

LUTs (×103) 36.4 13.7 0.92

Throughput 30.8 fps 688 mat/s 38.4 fps

6. CONCLUSION

The synthesis of multi-level memory hierarchies for memory

intensive image processing applications on FPGA is currently

a manual process, and is an open issue challenging the vi-

ability of HLS synthesis tools for these platforms. In this

paper we have presented the first automated solution to this

problem. By exploiting a novel dataflow dialect, VDF, which

explicitly separates computation from data manipulation and

communication, we have shown how these applications may

be automatically mapped to a multi-level hierarchy of off-

chip DDR and a combination of dedicated and programmable

logic-based RAM components. As experimental evidence of

the viability of this approach, we have presented the synthe-

sis and real-time performance results of automatically gener-

ated FPGA memory hierarchies for Motion Estimation, Ma-

trix Multiplication and Sobel Edge Detection applications. In

all cases real-time processing was enabled.

7. REFERENCES

[1] BDTI, FPGAs for DSP, 2008.

[2] J. Cong, Bin Liu, S. Neuendorffer, J. Noguera, K. Vis-

sers, and Z. Zhang, “High-Level Synthesis for FPGAs

: From Prototyping to Deployment,” IEEE Trans. CAD,

vol. 30, no. 4, pp. 473–491, 2011.

[3] Xilinx Inc., “Virtex-6 FPGA Memory Resources User

Guide,” Tech. Rep., 2011.

[4] S. Fischaber, R. Woods, and J. McAllister, “SoC Mem-

ory Hierarchy Derivation from Dataflow Graphs,” Jour-
nal of Signal Processing Systems, vol. 60, no. 3, pp.

345–361, 2010.

[5] S.H. Nam, J.S. Baek, and M.K. Lee, “Flexible VLSI Ar-

chitecture of Full Search Motion Estimation for Video

Applications,” VLSI Design, vol. 40, no. 2, pp. 176–

184, 1994.

[6] K. Denolf, S. Neuendorffer, and K. Vissers, “Using C-

to-gates to program streaming image processing kernels

efficiently on FPGAs,” in International Conference on
Field Programmable Logic and Applications. 2009, pp.

626–630, IEEE.

[7] Q. Liu, G.A. Constantinides, K. Masselos, and P.Y.K.

Cheung, “Combining Data Reuse with Data-Level Par-

allelization for FPGA Targeted Hardware Compilation:

A Geometric Programming Framework,” IEEE Trans.
CAD, vol. 28, no. 3, pp. 279–280, 2009.

[8] E. Deprettere and T. Stefanov, “Affine Nested Loop Pro-

grams and their Binary Parameterized Dataflow Graph

Counterparts,” in Int. Conf. Application-specific Sys-
tems, Architectures and Processors, 2006, pp. 186 –

190.

[9] H. Nikolov, T. Stefanov, and E. Deprettere, “Multi-

processor system design with ESPAM,” 4th Int Conf
on Hardware/Software Codesign and System synthesis,

p. 211, 2006.

[10] Michael Fingeroff, HLS Blue Book, 2009.

[11] E A Lee and T M Parks, “Dataflow process networks,”

Proceedings of the IEEE, vol. 83, no. 5, pp. 773–801,

May 1995.

1648

