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ABSTRACT

Real-time detection of intermittent events requires continual
monitoring and processing of sensor data. A battery-powered
device that supports multiple sensing modalities and process-
ing algorithms has the potential to save energy by using ex-
pensive sensors and algorithms only when the event of inter-
est is most likely to occur. To develop a policy for sensing
and processing management, we adopt maximum sequential
information gain as an objective criterion for such energy-
limited systems, which can be solved via dynamic program-
ming. For binary hypothesis testing with two sensing options,
the optimal management policy is a simple two-threshold test
on the posterior belief. Detection of bird presence/absence in
a wildlife monitoring application shows up to a 37% reduc-
tion in error rate over standard constant-duty-cycle sensing.

Index Terms— Low-power systems, sensor manage-
ment, detection, wildlife monitoring

1. INTRODUCTION

Real-time detection of intermittent events requires vigilant
monitoring of sensor data. The implication is that when con-
tinual monitoring is required, sensing and data processing
may dominate the energy consumption of the device. Typi-
cal embedded applications circumvent this problem by duty-
cycling, which substantially increases battery lifetime. Duty
cycling according to a fixed sleep schedule may be appro-
priate for signals that are always present (e.g. temperature
monitoring and data logging), but may incur a significant per-
formance penalty when the detection of transient, intermittent
events is required.

Conceptually, our approach to designing an energy-
efficient, high-performance detection system is to equip the
device with multiple sensors and algorithms with various
performance/energy consumption trade-offs, and employ in-
telligent closed-loop policies to select sensors and algorithms
by using past observations and a priori domain knowledge.
With this approach, there are several challenges in developing
intelligent sensing/processing management policies. The first
challenge is that any policy must be causal; at every time
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instance, in order to actually save energy, a decision about
what to sense and how to process signals must be made before
an observation is collected and processed. Second, because
energy is a conservable resource, an optimal policy will trade
off the current reward for sensing now with the future reward
for sensing later. A third, potentially conflicting challenge is
that a policy should be computationally efficient for it to be
useful.

These challenges are addressed by formulating dynamic
sensor management in the context of optimal control; see [1]
for a recent survey. While the theoretical framework is quite
general, the applications have been mainly in the context of
tracking applications in large wireless sensor networks with
multiple devices. Our basic approach applies this framework,
but our focus on detection applications on a single device re-
sults in only a fraction of the computational burden found in
more traditional sensor-management applications.

In this paper, we generalize the notion of a sensor to in-
clude not only all of the sensors and sensing modes avail-
able on a device, but also the algorithms available to process
the data and make a detection. We map this problem to an
energy-constrained sensor management problem. We adopt
a sequential information gain criterion over a finite horizon,
and show how a dynamic program can be formulated to solve
for the optimal closed-loop policy, which extracts the most in-
formation on average for a given expected energy constraint.
We consider time-dependent binary detection, where thresh-
old tests are computationally efficient, and we posit that for
a stationary process, the optimal policy converges to station-
ary thresholds as the time horizon increases. We demonstrate
sensor management in the form of a sense/don’t-sense prob-
lem in a birdsong detection application, showing up to a 37%
reduction in error rate over constant-duty-cycle sensing.

2. PROBLEM FORMULATION

Detection of intermittent events, or time-dependent detection,
can be posed as a tracking problem, where the true state of na-
ture is estimated over time, based on the measurements from
noisy sensors. We map the problem of managing sensing,
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processing, and decision-making over a given time horizon to
a “virtual” sensor management problem. The optimal man-
agement policy is solved using dynamic programming tech-
niques [2], and aims to trade off the information gained with
the energy consumed.

2.1. Sensing, processing, and detection as a generalized
sensor

The generalized sensor consists of a particular combination
of 1) sensing to collect data, 2) processing to extract infor-
mation, and 3) making a decision about the state of nature.
This formulation is generally suboptimal in the sense that the
output of the generalized sensors represent the hard decisions
made by the chosen detection algorithm, which is limited to
the possible states of nature. Denote the output space as Y (%),
where u € U is an index for the generalized sensor. We as-
sume that U = {1, ..., M }; that is, there are a finite number
of sensing, processing, and detection combinations.

Each sensor has an associated energy consumption cost,
which can be measured in practice [3] and consists of energy
for sensing and computation. We assume that these costs are
fixed and known. Denote ¢ : U — R as the function which
maps each sensor to an energy cost.

2.2. Time-varying state estimation

We model time-dependent detection as a problem of state es-
timation. In particular, we assume that the dynamics of the
state space is a first-order Markov process, which we denote
as X, € X, where X is discrete and finite !. For example, in
an acoustic bird monitoring application, we may be interested
in whether a bird is present (X = 1) or not (X} = 0), which
is to be inferred from sampled microphone data.

The one-step transition probability matrix, which in gen-
eral can be time-varying, is denoted as Ay = (a; ;)
Pr(Xyx = j|Xk—1 = i). The Markov assumption captures
the behavior of simple transient events, and its validity is
generally application-dependent. We show later that this
first-order model may be sufficiently rich enough to describe
the presence and absence of wildlife.

The observation generation matrix for sensor u is denoted

as B,g“) = (bgz)), and reflects the detection performance of

the detection algorithm. For example, when M = 2, B,(Cu)

represent the false alarm and true detection rates, (Pp, Pra)
of the detection algorithm utilized by u:

by = Pr(v" = 11X, = 0) = P, (1
o) =Pr(v" = 1[X, =1) = P @

'Here, k is a discrete time index which corresponds to the rate of the
generalized sensor, which is generally different than the sampling rate of the
ADC.
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We assume the sensor observations are independent across
sensors, conditioned on the true state of nature.

The causal sensor management and estimation problem
can be explained as follows. At the beginning of time &, a
management policy, 1, takes all of the information available
thus far, denoted as I;—1 = {0, .-, Uk—1,U0s - - -, Uk—1 }»
and selects uy, which is the sensor to use at the current time
step. Making a sensor observation is equivalent to collecting
and processing data to output a decision ¥, = y,(cuk‘). Once
the sensor “measurement” is made, the information vector is
updated: I = {kal, gk,uk}

For estimation, we assume that a sequential Bayes filter,
®y, is used to construct a posterior belief about the hidden
state X}, given [;. Denoting the posterior belief as 7 =
PI‘(Xkuk),

Zi1 = @p(Zy, Ui, ur) 3)

where @, is defined using Bayes rule and model parameters.

2.3. Energy-constrained sequential information gain

Information measures have been used successfully in sensor
management problems [1, 2, 4]. In part, this is due to the fact
that the posterior belief summarizes all of the acquired infor-
mation, [;_1. As a result, measuring the expected change in
the belief due to using a particular sensor is a natural criterion
for sensor selection. More specifically, given the information
vector I;,_1 and a sensor u, the mutual information between
the state X, and observation f’k is:

I(Xy:Y3) = H(Xy) — H(X3|Y2) 4)

which is the expected reduction in entropy for seeing Yk(u’“).
Note, that in (4), it is implied that the distributions of X} and
?k. are conditioned on [ _1.

Sensor management is necessary because we assume that
the energy available for sensing and processing is limited.
Because energy is the power consumed over some period of
time, we consider a finite time horizon, n, over which an en-
ergy constraint is imposed.

Denote an admissible policy as 7 = (uo, ..., ). Em-
ploying Lagrangian relaxation to decouple the energy con-
straint across the planning horizon, the problem is to find a
policy, , that maximizes the objective function

e =B | S I(Xis V) = X e (ulTe1)) | 5)
k=0

where A > 0 is a Lagrange multiplier chosen such that the
energy constraint is satisfied, and the expectation is taken with
respect to the joint distribution of X™ and Y, as induced by
the policy 7.



2.4. Dynamic programming

Dynamic programming can be used to solve (5) by taking the
posterior belief, Zj, as the state space, where the dynamics of
the state evolve recursively according to (3) [5]. Because the
posterior belief is sufficient to evaluate (4), we can write it
explicitly as: [(Xy; f’k|Zk_1, ug). Defining fip, : P(X) —
Uand @ = (fig,---,fin), (5) can be equivalently stated as
seeking the policy 7 that maximizes the objective function
J=, defined to be:

Ex |:ZI_(XI€;Y/I€|ZIC13/LI€<ZI€1)) = Ac(fin(Zi-1))| (6)
k=0

Applying the dynamic programming algorithm, the value
function at time n is given as:

Ta(Zno1) = max 1(Xn; Ya|Zno1,un) = Ac(un)  (7)
Un
Once the value function at time n is constructed, we recurse
backwards in time fork =n —1,...,0:

J,?(Zk_l) = mg% j(Xk;?k|Zk_1,uk) - )\c(uk)
up,
+Eg, [Tii1 (Pr(Zk—1, un, Gx))] (8)

Observe that because Y (*) is limited to be a discrete finite
space, the expectation in (8) is easy to evaluate. When k£ = 0,
the optimization terminates with:

I = JNZ-0) ©)

where Z_; is the prior probability of the hypotheses, and
a*(Z_1) = ufy, where ug achieves the maximum in (8).

3. POLICY FOR BINARY DETECTION

In general, the DP algorithm can be computationally pro-
hibitive if the belief space is large. In this section, we consider
the binary hypothesis-testing problem, where we assume that
X = {0,1}, such that X}, = 0 and X, = 1 correspond to the
null and alternative hypothesis, respectively.

3.1. DP algorithm for binary detection

The space of posterior beliefs is one-dimensional: define
Zy, = Pr(Xy = 1|I) € [0, 1]. In each stage of the DP algo-
rithm, the [0, 1] interval is discretized into D levels, and for
each of the D values of Z,, the maximization is taken over M
elements 2. The computational requirement for solving the
backward DP algorithm is on the order of O(nDM ), which
can be done once offline, and a look-up table proportional to
nD is needed to store the value function at each stage, for
online use.

2This is generally much less than the number of sensor nodes in a WSN.
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3.2. Optimal policy structure

We can significantly reduce the memory requirement for the
look-up table by observing that the optimal policy partitions
the belief space into a small number of regions mapping to
different controls. In particular, consider that at the final time-
step, the value function, .J,,(Z,,—1), is the maximization over
M functions that are concave in Z,,_1, which follows because
mutual information is concave in the belief [6]. When M = 2,
assuming 77, and 7y are the points of intersection, the optimal
policy at time n is a two-threshold test where:

w fZ, 1 <TporZ, 1>y
Lp—1) = .
pin(Zn—1) { uy otherwise

(10)

For stationary Markov processes, we have empirically ob-
served that this threshold structure holds for all stages in the
DP and the value of the thresholds converge rather quickly.
This implies that implementing a two-threshold test is practi-
cally optimal for long time horizons, and requires storing only
two thresholds in a look-up table.

3.3. Simulations

We compare the optimal threshold-based policy to a fixed and
random schedule, assuming a sense/don’t-sense problem (i.e.
M = 2). The Markov parameters were chosen to reflect the
time-varying nature of the presence of wildlife. Assuming
equal priors, we let ago = 0.8, aj,; = 0.95, (P}?,Pg)) =
(0.1,0.98), ¢(1) = 0 and ¢(2) = 10. We assume a time
horizon of n = 20000 and sweep through values of A for
different energy consumptions, and average over 25 sample
paths.

To evaluate performance, we assume a sequential MAP
estimate is made at every time-step. The error in terms of es-
timation performance is plotted in Fig. 1, which shows that
sensor management outperforms random and fixed schedul-

ing.
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Fig. 1. MAP estimation error rate vs energy consumption for
optimal, fixed, and randomized policies.



4. APPLICATION: MONITORING BIRD CALLS

The Golden-cheeked Warbler is an endangered species found
in central Texas [7]. The warbler has two very distinct,
generic calls in the 6-8 kHz frequency range, which are used
to claim its territory and attract mates. Biologists are inter-
ested in population and behavioral studies, both of which
require the detection of the presence of the birds.

We model the dynamics of the bird with three states: 1)
bird is present and calling, 2) bird is present and resting, 3)
bird is absent. The warbler not only has a unique call sig-
nature, but also a unique call structure. When present, the
warbler’s call lasts for one to two seconds, typically calling
once every ten seconds, with a calling session lasting any-
where from ten to thirty minutes.

For the sensing, processing, and detection, we consider
two generalized sensors. One option, denoted as u, = 1,
is to not sense and put the processor to sleep. The second
option, denoted as u; = 2, is to collect acoustic data at a
20 kHz sampling rate, bandpass filter the signal, and detect
sudden changes in the signal energy. A decision is made once
per second, which is taken to be the rate of the HMM. On
a TT MSP430, sleeping consumes about 11:A, whereas our
measurements show that powering the mic, running the ADC,
and processing consumes an average of 4001A.

The HMM parameters, A and B(?) were learned using the
Baum-Welch algorithm on 80 minutes of training data and
corresponded very well to the dynamics of the calling struc-
ture and sessions.

We compared a threshold-based policy to a fixed sleep
schedule applied to 210 minutes of test data, which corre-
sponds to a time horizon of n = 12, 600 seconds. For an aver-
age current consumption of 50uA, which represents 12.5% of
the energy cost of sensing and processing, utilizing the man-
agement policy results in an error rate of 15%, versus a 24%
error rate for the fixed schedule, representing a 37% reduc-
tion in error rate. Although more data and testing is needed,
we note that at least intuitively, our management policy is do-
ing the right thing. Illustrated in Fig. 2, we observe sens-
ing behavior that is state-dependent. That is, the management
policy exploits the dynamic behavior of the birds and senses
frequently only when it believes (based on its sensor observa-
tions) that a bird is present.

5. CONCLUSIONS

Sequential information gain is a good application-agnostic
metric for designing sensor management policies. In the case
of time-dependent binary detection with two generalized sen-
sors, the problem of sensor selection maps to a simple two-
threshold test on the posterior belief, adding minimal com-
putation overhead to the tracking problem. For stationary
Markov processes, we conjecture that a two-threshold test
with constant thresholds is asymptotically optimal for long

1644

503
p=}
£y hlﬂll{ Hﬂi hl
n<
2000 4000 6000 8000 10000 12000
g2
o
< E 21
=37}
w1

2000 4000 6000 8000 10000 12000

UL [INNRRRRAN (RRARANIN |

2000 4000 6000 8000 10000 12000
Time (seconds)

Sensor
- N

Selected

Fig. 2. Causal sensor selection on real data. Top plot shows
the true state of nature, middle plot shows the MAP estimate,
and the lower plot shows the sensor selected at each time-step.

horizons. Although we only demonstrated the optimal man-
agement policy for a simple sense/don’t sense problem, the
empirical results are compelling; the optimization procedure
described in this paper can be used in more interesting ways
(e.g. add an imaging modality to visually verify the presence
of the warbler), and future work will seek to find computa-
tionally simple management policies as we increase the num-
ber of generalized sensors and consider more complex state
spaces.
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